Bashirul Haq | Hydrogen Storage | Sustainable Energy Practices in Petroleum Award

Dr. Bashirul Haq | Hydrogen Storage | Sustainable Energy Practices in Petroleum Award

Associate Professor at King Fahd University of Petroleum and Minerals, Saudi Arabia

Dr. Bashirul Haq is a distinguished Associate Professor and seasoned researcher with over a decade of significant contributions in the field of petroleum engineering, with a specialized focus on underground hydrogen storage, hydrogen blending in gas networks, and green enhanced oil recovery (EOR) technologies. Renowned for his interdisciplinary approach, Dr. Haq has established a strong academic and research presence through his impactful collaborations, innovative methodologies, and leadership in both education and applied research. His work bridges the critical interface between sustainability and energy production, offering practical solutions to complex engineering challenges.

Profile

Scopus

Education

Dr. Haq’s academic foundation is rooted in a commitment to scientific excellence. He holds a Ph.D. in Petroleum Engineering from the University of Western Australia (2013), where his doctoral research addressed the role of green surfactants in microbial enhanced oil recovery—pioneering a sustainable approach to conventional energy production. He earned both his Master of Science in Petroleum Engineering and Bachelor of Science in Chemical Engineering from Bangladesh University of Engineering and Technology, where he specialized in reservoir studies and hydrogen production via steam reforming. These qualifications laid a strong foundation for his continued academic innovation and research leadership.

Experience

With an academic career spanning over 15 years, Dr. Haq currently serves as Assistant Professor at King Fahd University of Petroleum and Minerals, where he leads several major research initiatives funded by Saudi Aramco and the Centre for Advanced Materials. Prior to this, he held teaching and research positions at Edith Cowan University, The University of Western Australia, and Curtin University. He has demonstrated excellence in course development, thesis supervision, and inter-institutional collaboration. His research portfolio includes cutting-edge projects on underground hydrogen storage, corrosion mitigation in H₂-blended gas pipelines, CO₂ utilization, and predictive well health monitoring systems. His earlier consultancy roles with Chevron and APA Group further reflect his applied expertise in production diagnostics and reservoir engineering.

Research Interest

Dr. Haq’s research interests are defined by the convergence of sustainability and energy innovation. His investigations into underground hydrogen storage consider the petrophysical, mechanical, and microbial interactions within subsurface reservoirs, while his work in hydrogen blending focuses on optimizing pipeline safety and material integrity in mixed-gas environments. Equally noteworthy is his contribution to green EOR through nanotechnology-enabled biosurfactants and carbon materials derived from organic waste, which advance both environmental goals and production efficiency. His research has had a lasting impact on the development of safer, cleaner, and more efficient hydrocarbon and hydrogen energy systems.

Award

Dr. Haq has been the recipient of several prestigious research grants and accolades. He was awarded over SAR 3.8 million in research funding by Saudi Aramco and associated institutions between 2020 and 2023, supporting high-impact projects on hydrogen storage and green EOR. He is the co-inventor of a U.S. patent titled “Oil Recovery Methods Using Carboxylated Pyrolyzed Date Leaves” (US10836952), which proposes a novel, environmentally friendly approach to oil recovery. He also received the CSIRO–University Postgraduate Scholarship in Australia and was nominated for the UWA Faculty Teaching Award for Outstanding Contribution in 2011. These accolades underscore his scientific innovation and commitment to academic excellence.

Publication

Dr. Haq is a prolific author with a strong publication record in high-impact journals. Selected peer-reviewed articles include:

  1. “A Review On Worldwide Underground Hydrogen Storage Operating And Potential Fields”, International Journal of Hydrogen Energy, 2022 – cited in studies of emerging hydrogen infrastructure.

  2. “Naturally Derived Carbon Material for Hydrogen Storage”, APPEA Journal, 2022 – contributed to sustainable hydrogen materials research.

  3. “Date-Leaf Carbon Particles for Green Enhanced Oil Recovery”, Nanomaterials, 2022 – referenced in green EOR studies.

  4. “Surfactant Formulation for Green Enhanced Oil Recovery”, Energy Reports, 2022 – utilized in comparative surfactant evaluations.

  5. “Green Enhanced Oil Recovery for Carbonates”, Polymers, 2021 – cited for carbonate reservoir applications.

  6. “Comparative Study of Green and Synthetic Polymers for Enhanced Oil Recovery”, Polymers, 2020 – frequently referenced in polymer EOR research.

  7. “Modification of Eclipse Simulator for Microbial Enhanced Oil Recovery (MEOR)”, Journal of Petroleum Exploration and Production Technology, 2019 – instrumental in MEOR simulation enhancements.

Conclusion

In conclusion, Dr. Bashirul Haq represents a model of excellence in academic leadership, scientific research, and innovation in sustainable energy technologies. His career achievements reflect a dedication to bridging research with industry needs and environmental responsibility. Through pioneering efforts in hydrogen storage, EOR, and curriculum development, he continues to influence the global energy discourse and mentor the next generation of engineers. Dr. Haq’s nomination for this award is a recognition of both his past achievements and his ongoing contributions to a sustainable energy future.

Abirmoy Ghosh | Petroleum Engineering | Best Researcher Award

Mr. Abirmoy Ghosh | Petroleum Engineering | Best Researcher Award

Manager at INDIAN OIL CORPORATION LIMITED PANIPAT REFINERY, India

Abirmoy Ghosh is a dynamic and results-oriented professional currently serving as Manager at the Indian Oil Corporation Limited (IOCL), Panipat Refinery. With a strong foundation in mechanical engineering and over nine years of experience in refinery operations and R&D, he has consistently demonstrated excellence in mechanical design, engineering, and stress analysis. Abirmoy’s contributions have had a tangible impact on the reliability and performance of critical refinery systems, addressing long-standing mechanical challenges through innovative research and engineering interventions. His work bridges practical industrial needs with technical rigor, making him a valuable asset to the engineering and research community.

Profile

Orcid

Education

Abirmoy holds a Bachelor of Technology degree in Mechanical Engineering and a Master of Technology degree in Applied Mechanics, both from the prestigious Indian Institute of Technology (IIT) Delhi. His academic training laid a strong theoretical and analytical foundation, which he has effectively translated into real-world problem-solving capabilities. His education has enabled him to approach refinery challenges with a structured methodology grounded in core mechanical principles and advanced analytical techniques.

Experience

Abirmoy Ghosh brings nine years of specialized experience in the petroleum refining sector through his tenure at the Indian Oil Corporation Limited. His career has spanned both refinery operations and the Research & Development Centre of IOCL, where he has played pivotal roles in project execution, failure analysis, and mechanical design. He has been involved in troubleshooting, upgrading, and maintaining critical refinery components across multiple IOCL sites. His expertise in stress analysis and mechanical integrity assessments has contributed significantly to the enhancement of safety, reliability, and efficiency in refinery operations.

Research Interest

Abirmoy’s research interests lie primarily in mechanical design and stress analysis with a focus on solving persistent mechanical failures in refinery systems. He is particularly driven by industrial problems that demand customized analytical and engineering solutions. His recent work on improving the reliability of expansion joints in the reactor overhead lines of Fluidized Catalytic Cracking (FCC) units exemplifies his approach to research—targeting chronic issues with precision analysis, solution engineering, and practical implementation. His broader interests include fatigue analysis, material behavior under stress, and high-temperature component reliability.

Award

In recognition of his pioneering work in addressing a long-pending reliability issue in a critical refinery system, Abirmoy Ghosh is a strong contender for the Best Researcher Award. His innovative contributions to mechanical failure analysis and design optimization have delivered significant operational improvements, directly impacting plant reliability and safety. The research he led resolved a problem that had persisted for over three decades, exemplifying his capability to translate academic and analytical insight into transformative industrial solutions.

Publication

Abirmoy has one notable journal publication to his credit.

“Failure Analysis and Reliability Improvement of Expansion Joint in FCC Reactor Overhead Line of Petroleum Refinery”, Journal of Failure Analysis and Prevention, Springer, 2025. Cited by 4 articles to date.

This publication details the comprehensive engineering analysis and design enhancements that resolved a persistent failure in one of the most critical components of a refinery’s FCC unit.

His work provides a replicable model for solving similar high-stress failure problems in other heavy-industrial settings, underlining both technical depth and industrial relevance.

Conclusion

Abirmoy Ghosh exemplifies the ideal balance between academic rigor and industrial pragmatism. His contributions in the domain of mechanical design and reliability engineering have not only solved a historically unaddressed issue in IOCL’s refinery operations but have also set a benchmark for problem-solving in the petroleum refining industry. His deep technical insight, backed by strong educational credentials and a track record of impactful implementation, makes him an outstanding candidate for the Best Researcher Award. Abirmoy continues to strive toward innovative solutions that improve reliability and safety, making him a valuable leader in engineering and applied research.

Mehmet Cakir | Petroleum Engineering | Best Research in Petroleum Engineering Award

Assoc. Prof. Dr. Mehmet Cakir | Petroleum Engineering | Best Research in Petroleum Engineering Award

Associate Professor at Yildiz Technical University, Turkey

Assoc. Prof. Mehmet Çakır is a distinguished academic and researcher in the field of marine engineering, currently serving as an Associate Professor at Yildiz Technical University’s Department of Marine Engineering. His expertise extends to alternative fuels, combustion technologies, and optimizing engine performance for sustainability. Dr. Çakır’s extensive research in energy efficiency, alternative fuel systems, and combustion processes has earned him a reputation as a leader in the field. He was awarded a prestigious TUBITAK International Research Fellowship, which enabled him to conduct postdoctoral research at the University of Nottingham in the United Kingdom, focusing on alternative-fueled engines and combustion systems. Over the years, he has been instrumental in leading innovative projects supported by TUBITAK and the Ministry of Industry and Technology. Dr. Çakır is actively involved in mentoring future researchers and PhD candidates, offering guidance in his areas of expertise, which include combustion modes, ammonia cracking systems, and fuel efficiency in internal combustion engines (ICEs).

Profile

Orcid

Education

Dr. Çakır earned his postdoctoral qualifications at the University of Nottingham, where he worked in the Faculty of Engineering’s Department of Mechanical, Manufacturing, and Materials Engineering from 2018 to 2020. This experience allowed him to deepen his knowledge and conduct high-level research in alternative fuel technologies, combustion, and engine efficiency. His research at Nottingham was centered on developing and testing alternative fuel systems, including the performance of ammonia-based fuels in internal combustion engines. Dr. Çakır’s academic foundation also includes graduate and undergraduate studies, which laid the groundwork for his deep interest in energy systems, thermodynamics, and the challenges of improving engine performance in both environmental and technological contexts.

Experience

With over a decade of experience in the academic field, Dr. Çakır has held various positions at Yildiz Technical University, where he started as an Assistant Professor and was promoted to Associate Professor in 2020. His expertise in marine engineering and combustion research has led to numerous research projects, many of which have been funded by TUBITAK and the Ministry of Industry and Technology. These projects have focused on improving engine performance, reducing emissions, and exploring alternative fuels for internal combustion engines, specifically natural gas and ammonia. His research has not only advanced theoretical understanding but also translated into practical applications, including the development of prototypes for self-propelled machinery used in agriculture. Dr. Çakır has supervised numerous graduate and doctoral students, providing guidance on topics ranging from fuel system optimization to innovative combustion methods. His work is recognized internationally, with invitations to collaborate on various research projects and academic panels.

Research Interests

Dr. Çakır’s primary research interests lie in the areas of alternative fuels, combustion technology, and energy efficiency within internal combustion engines. His ongoing research projects explore novel combustion modes for zero-carbon fuels, such as ammonia and hydrogen, and the development of combustion chambers optimized for these fuels. Another major focus is the design and modeling of ammonia cracking systems to reduce carbon emissions in power systems. Dr. Çakır also investigates laminar flame speeds in various fuel mixtures, using advanced experimental techniques such as schlieren imaging and constant-volume combustion bomb tests to measure and analyze combustion processes. Computational fluid dynamics (CFD) modeling is another area of his research, helping to simulate combustion dynamics and improve engine performance and efficiency. Dr. Çakır is particularly interested in the intersection of combustion research and advanced energy technologies, focusing on the future of renewable fuels and their integration into internal combustion engines.

Awards

Dr. Çakır’s contributions to engineering have been recognized by several prestigious awards throughout his career. In December 2018, he received the Grow-tech Agriculture Innovation Prize at the Antalya Chamber of Commerce for his work on agricultural machinery, particularly a prototype for self-propelled pruning residue shredding machines. Additionally, he earned a Gold Medal at the 3rd Istanbul International Inventions Fair in 2018, awarded by the Turkish Patent and Trademark Office for his innovative designs in engineering and technology. These accolades reflect his commitment to applied research and the practical impact of his work, which spans both the academic and industrial sectors. Dr. Çakır’s research continues to influence developments in sustainable energy systems and alternative fuel technologies.

Publications

Cakir M., “Effect of Stratified Charge Combustion Chamber Design on Natural Gas Engine Performance,” Energies, vol. 18, no. 9, pp. 1-14, 2025 (SCI-Expanded). Cited by 15.

Cakir M., Gonca G., “Influences of a Novel Pre-chamber Design on the Performance and Emission Characteristics of a Spark Ignition Engine Fueled with Natural Gas,” International Journal of Global Warming, vol. 31, no. 1, pp. 68-81, 2023 (SCI-Expanded). Cited by 12.

Cakir M., Ünal İ., Çanakcı M., “Design and Development of the PLC Based Sensor and Instrumentation System for Self-propelled Pruning Residue Mulcher Prototype,” Computers and Electronics in Agriculture, vol. 186, 2021 (SCI-Expanded). Cited by 8.

Cakir M., “Experimental Dynamic Analysis of the Piston Assembly of a Running Single-cylinder Diesel Engine,” Journal of Marine Engineering and Technology, vol. 20, no. 4, pp. 235-242, 2021 (SCI-Expanded). Cited by 10.

Cakir M., Gonca G., Şahin B., “Performance Characteristics and Emission Formations of a Spark Ignition (SI) Engine Fueled with Different Gaseous Fuels,” Arabian Journal for Science and Engineering, vol. 43, pp. 4487-4499, 2018 (SCI-Expanded). Cited by 9.

Conclusion

Assoc. Prof. Mehmet Çakır’s academic journey reflects a steadfast dedication to advancing the understanding and practical application of sustainable energy technologies. His extensive research in combustion, engine performance optimization, and alternative fuel systems positions him as a leading figure in the field of marine and mechanical engineering. Dr. Çakır’s work continues to influence global research in energy efficiency and low-emission technologies, particularly in the development of new fuels and combustion systems that are crucial to addressing environmental challenges. Through his teaching, mentoring, and research, he has made significant contributions to the development of new technologies and solutions that promise to revolutionize internal combustion engines and other energy systems. Dr. Çakır’s innovative projects and continued dedication to research are helping shape the future of sustainable engineering practices.