Ida Lykke Fabricius | Petrophysics and Rock Physics | Best Researcher Award

Prof. Dr. Ida Lykke Fabricius | Petrophysics and Rock Physics | Best Researcher Award

Professor Emerita at Technical University of Denmark, Denmark

Ida Lykke Fabricius is a distinguished geoscientist whose career spans over four decades of impactful contributions to sedimentary rock physics and geotechnical engineering. Currently Professor Emerita at DTU Sustain, she has played a central role in bridging the gap between academic research and applied geoscience, particularly within the domains of sediment mechanics, rock physics, and reservoir characterization. Her legacy is reflected not only in her extensive publication record but also in her leadership within Danish and Scandinavian scientific institutions. Fabricius has continuously advanced the understanding of how sedimentary rock properties evolve under geological processes, guiding the development of energy, environmental, and civil infrastructure projects.

Profile

Orcid

Education

Fabricius’s academic journey began with an MSc in Geology from the University of Copenhagen in 1981, where she was awarded the prestigious Gold Medal. She went on to earn her PhD in 1988 at the Institute of Applied Geology at the Technical University of Denmark (DTU), focusing on the physical behavior of geological materials. Her academic pursuit culminated in a Dr. techn. degree in 2009 from DTU’s Department of Environmental Engineering, affirming her status as a leading authority in her field. Her progressive academic training reflects a continuous and deepening specialization in geotechnical and geological engineering.

Experience

With a career marked by steady advancement and scientific leadership, Fabricius began as a Development Geologist at Mærsk Oil and Gas (1981–1985) before transitioning to academia. From 1985 to 1988, she served as an Assistant Professor/PhD student at DTU, moving into an Associate Professor role until 2011. She took on early leadership as Head of Department in Geology and Geotechnical Engineering from 1989 to 1992, and later held the positions of Professor MSO (2011–2016), Head of Section (2012–2022), and Professor (2016–2024) at the Department of Civil Engineering, DTU. Internationally, she also contributed as Professor II at the University of Stavanger (2014–2018). Her transition to Professor Emerita in 2024 marks a continuing commitment to mentoring and scientific dialogue.

Research Interest

Fabricius’s research centers on the physical properties of sediments and sedimentary rocks, particularly in relation to pore fluid composition, pressure, temperature, and diagenesis. Her work integrates laboratory measurements with field data, enabling robust models for mechanical behavior and acoustic properties of sedimentary formations. She has contributed significantly to linking rock physics and rock mechanics, with applications ranging from hydrocarbon exploration to sustainable subsurface infrastructure. Her interdisciplinary approach has helped to unify geotechnical engineering, geophysics, and petrophysics into actionable scientific frameworks.

Award

Throughout her career, Fabricius has received notable honors that underscore her technical leadership and service. In 2023, she received the SPE Copenhagen Award for Outstanding Technical & Academic Contributions, a recognition of her influence in petroleum geoscience. She was knighted as “Ridder af Dannebrogsordenen” in 2019, reflecting national recognition of her contributions to science. Earlier distinctions include the Direktør Gorm-Petersens Mindelegat in 1989 and the University of Copenhagen Gold Medal in 1981. These awards affirm both her early promise and long-standing excellence.

Publication

Fabricius has authored over 98 Web of Science-indexed articles with 2,730 citations and an h-index of 30, reflecting her sustained influence in geoscience. Some notable publications include:

  1. Fabricius, I. L. (2003). “How burial diagenesis affects chalk porosity.” AAPG Bulletin, cited by 289 articles.

  2. Fabricius, I. L., et al. (2007). “Petrophysical properties of chalk: pore structure and acoustic velocity.” Petroleum Geoscience, cited by 174 articles.

  3. Fabricius, I. L., & Baechle, G. (2009). “Elastic moduli of chalk and pore system properties.” Geophysics, cited by 141 articles.

  4. Fabricius, I. L., et al. (2008). “Effect of temperature and salinity on acoustic velocity in chalk.” Geophysical Prospecting, cited by 97 articles.

  5. Fabricius, I. L. (2006). “Pore pressure prediction from acoustic data.” Marine and Petroleum Geology, cited by 85 articles.

  6. Fabricius, I. L., & Røgen, B. (2001). “Strength and porosity of chalk from the North Sea.” Journal of Petroleum Science and Engineering, cited by 76 articles.

  7. Fabricius, I. L., et al. (2010). “Velocity–porosity transforms in chalk.” Geophysical Journal International, cited by 69 articles.

These selected publications highlight her integrative and data-driven approach to understanding chalk and sedimentary systems.

Conclusion

Professor Ida Lykke Fabricius has established herself as a cornerstone of geoscientific advancement in Denmark and beyond. Her pioneering research in sedimentary rock physics has shaped both theoretical understanding and practical applications in petroleum engineering, geotechnics, and environmental geoscience. Her leadership roles, high-impact publications, and national honors reflect a lifetime of dedication to scientific integrity, innovation, and education. Fabricius remains a role model for emerging geoscientists, combining rigorous analysis with a collaborative and visionary approach to earth sciences.

Chen Hao | Electromagnetic Survey | Best Researcher Award

Mr. Chen Hao | Electromagnetic Survey | Best Researcher Award

Assistant Researcher at Chengdu Center, China Geological Survey, China

Chen Hao is an Assistant Researcher at the Chengdu Center, China Geological Survey (Geoscience Innovation Center of Southwest China), specializing in electromagnetic geophysics with a focus on magnetotelluric (MT) data processing. His work addresses the development of high-precision impedance estimation methods, noise suppression strategies, and data quality evaluation frameworks for subsurface conductivity mapping. He has made significant contributions to advancing MT methodology, particularly in refining preprocessing techniques and formulating objective criteria for data quality assessment. His research is widely cited in the field and continues to shape practices in geophysical exploration and electromagnetic data interpretation.

Profile

Orcid

Education

Chen Hao holds a doctoral-level education in geophysics, with specialization in magnetotelluric methods and electromagnetic induction theory. His academic training focused on applying physical principles to analyze natural-source electromagnetic field data, enabling the development of innovative processing techniques. His doctoral thesis introduced a new MT data quality assessment framework that integrates phase differences and linearity metrics to categorize data types, forming the foundation of his future research trajectory. This educational background provides the theoretical rigor and analytical depth that underpin his contributions to geophysical signal analysis and inversion.

Experience

Professionally, Chen Hao has extensive experience working on both theoretical and field-based geophysical research. At the China Geological Survey, he has applied advanced MT methodologies to large-scale surveys, focusing on improving the quality and interpretability of electromagnetic data in complex geological environments. His completed project on “Magnetotelluric Data Noise Suppression and Quality Assessment” contributed a novel preprocessing framework that minimizes the need for high-quality datasets by introducing quantitative evaluation metrics. He is currently investigating MT data variability in response to geomagnetic storms, aiming to build real-time monitoring tools for space weather using geophysical measurements. His hands-on experience with time-series analysis, noise diagnostics, and impedance estimation techniques positions him as a methodological innovator in the domain of electromagnetic surveys.

Research Interest

Chen Hao’s primary research interests lie in magnetotelluric signal processing, time-series noise suppression, and the development of quality-driven inversion techniques. His work emphasizes understanding non-stationary noise in MT data and applying statistical and physical diagnostics to improve reliability. He is particularly interested in integrating linearity, phase differences, polarization direction, prediction errors, and hat matrix elements to create a multi-parameter MT data evaluation framework. His current research explores the relationship between MT signal integrity and geomagnetic activity, linking geophysics with space weather monitoring. His innovations continue to enable more consistent and objective MT processing workflows, especially in data-limited or noise-prone environments.

Award

Although he has not yet received formal awards, Chen Hao is a deserving nominee for the Best Researcher Award due to his impactful scientific contributions, rigorous methodology, and peer-reviewed publications. His quality assessment framework and its application in MT signal preprocessing have already influenced data processing practices in geophysics. His growing recognition within the scientific community is evidenced by the citation of his work in prominent journals. This nomination reflects his commitment to scientific advancement and his potential as a leader in electromagnetic geophysical research.

Publications

Chen Hao has authored several high-quality, peer-reviewed articles in SCI-indexed journals, each contributing to the development of MT processing techniques:

  1. Chen, H., Mizunaga, H., Tanaka, T. (2022). Influence of geomagnetic storms on the quality of magnetotelluric impedance. Earth Planets Space, 74, 1–17. (Cited by 10 articles)

  2. Chen, H., Zhang, L., Ren, Z., Cao, H., Wang, G. (2023). An Automatic Preselection Strategy for Magnetotelluric Single-Site Data Processing Based on Linearity and the Polarization Direction. Frontiers in Earth Science, 11, 1230071. (Cited by 7 articles)

  3. Chen, H., Zhang, L. (2025). Assessing Magnetotelluric Data Quality Based on Linearity and Phase Differences. Geophysics, 90: E79-E90. (Cited by 3 articles)

These works provide robust methodologies for MT data assessment and preprocessing, combining theoretical modeling with empirical validation, and have been cited in related geophysical literature.

Conclusion

Chen Hao exemplifies excellence in geophysical research through his integration of electromagnetic theory, statistical analysis, and computational methods. His innovations in MT data processing have improved signal reliability, optimized impedance estimation, and set new standards for data quality evaluation. His research has already influenced academic practices and offers substantial potential for future applications in resource exploration and environmental monitoring. With a growing body of influential publications, a clear research focus, and strong methodological contributions, Chen Hao stands out as a promising early-career researcher in geophysics. His nomination for the Best Researcher Award is a recognition of both his current impact and his potential for continued scientific leadership.

Xiaojun Tang | Well logging | Best Researcher Award

Prof. Xiaojun Tang | Well logging | Best Researcher Award

Professor at Xi’an Jiaotong University, China

Professor Xiaojun Tang is a leading academic in the field of intelligent detection systems applied to petroleum engineering. He currently serves at Xi’an Jiaotong University within the School of Instrumentation Science and Technology, where he also directs the Institute of Intelligent Detection Technology and Systems. With an emphasis on innovation and interdisciplinary integration, his academic journey has yielded substantial contributions in well/gas logging, spectral analysis, and intelligent instrumentation systems. He is a seasoned researcher with over 60 publications, 50 patents, and numerous prestigious awards recognizing his technological contributions to petroleum engineering and instrumentation.

Profile

Scopus

Education

Professor Tang’s academic foundation was laid through rigorous scientific training, culminating in a Ph.D. with specialization in instrumentation and signal analysis applied to petroleum applications. His doctoral research sparked his career-long focus on intelligent sensor systems, spectral diagnostics, and well-logging instrumentation. This advanced academic background has informed his leadership in developing frontier technologies that intersect physics, data science, and geoscience for enhanced subsurface exploration.

Experience

Over the years, Professor Tang has accumulated extensive experience in both academia and applied research. At Xi’an Jiaotong University, he has been instrumental in building an ecosystem of innovation that integrates academic research with practical industrial applications. His role as the director of the Institute of Intelligent Detection Technology and Systems highlights his leadership in organizing large-scale collaborative projects. He has spearheaded over 50 major scientific research projects, including those under China’s National Key Scientific Instrument Program and the National Natural Science Foundation. Beyond academia, he has engaged with industry partners such as PetroChina, CNOOC, and Changqing Oilfield, translating research outcomes into actionable field solutions.

Research Interest

Professor Tang’s research interests revolve around intelligent detection technologies for petroleum engineering, particularly in well logging, gas analysis, and mud logging. A key area of his focus is the development and deployment of spectral analysis technologies, notably FTIR (Fourier-transform infrared spectroscopy), for wellhead gas diagnostics. His pioneering work in applying FTIR technology has led to novel techniques for identifying aquifers based on water vapor signatures. These contributions have significantly improved reservoir characterization in low-resistivity and low-porosity formations, addressing long-standing challenges in hydrocarbon exploration. His interests also extend to coal mine gas safety and intelligent sensor systems, underscoring a broader commitment to energy sector innovation and safety.

Award

Professor Tang’s exceptional contributions have been recognized through multiple prestigious awards. He is a recipient of the Shaanxi Science and Technology Achievement Award (Second Prize), the Liaoning Science and Technology Progress Award (First Prize), and the Innovation Award from the China Instrument Society. These accolades reflect both the originality and practical utility of his research, particularly in the development of advanced instrumentation and data-driven diagnostics for petroleum exploration. His standing as a distinguished researcher is further validated by his h-index of 16 on Scopus, underscoring the significant impact and citation of his work in the scientific community.

Publication

Professor Tang’s scholarly work has been widely disseminated in high-impact journals. His notable publications include:

  1. “FTIR-based detection of water vapor in wellhead gas for aquifer identification,” Journal of Petroleum Science and Engineering, 2021, cited by 32 articles.

  2. “Spectral analysis in well logging: Application of intelligent algorithms,” Sensors and Actuators B: Chemical, 2020, cited by 45 articles.

  3. “A new intelligent gas logging sensor system for low-permeability reservoirs,” IEEE Sensors Journal, 2019, cited by 28 articles.

  4. “Infrared spectral inversion model for mud gas analysis,” Fuel, 2022, cited by 18 articles.

  5. “Smart instrumentation in downhole monitoring: A review,” Measurement, 2018, cited by 50 articles.

  6. “Hybrid sensor fusion for coalbed methane detection,” Energy Exploration & Exploitation, 2023, cited by 10 articles.

  7. “Mathematical modeling of water vapor features in reservoir diagnostics,” Journal of Natural Gas Science and Engineering, 2021, cited by 21 articles.

These publications collectively illustrate Professor Tang’s commitment to solving complex problems through technological innovation and interdisciplinary research.

Conclusion

Professor Xiaojun Tang exemplifies excellence in petroleum engineering through his sustained contributions to intelligent detection technology. His work bridges academic insight and field application, advancing both theory and practice in subsurface diagnostics. With a strong record of leadership in high-profile research projects, extensive publications, and impactful industry collaborations, he stands out as a pioneer in applying spectral and intelligent instrumentation techniques to petroleum exploration. His achievements have not only influenced the academic community but also directly enhanced operational efficiency and safety in the field. In recognition of his contributions, Professor Tang is a highly deserving candidate for the Best Researcher Award in petroleum engineering.

Massine Bouchakour | Petroleum Geology | Best Researcher Award

Dr. Massine Bouchakour | Petroleum Geology | Best Researcher Award

PhD at Southwest Petroleum University, China

Massine Bouchakour is a highly driven postdoctoral researcher in marine geology currently based at Southwest Petroleum University in China. With a multidisciplinary and international approach, his research focuses on deep-marine sedimentary systems, seismic interpretation, and reservoir connectivity in structurally complex geological settings. Having been trained across several institutions and mentored by global experts in geology, Bouchakour combines advanced scientific techniques with a passion for knowledge dissemination and collaborative research. His academic journey reflects not only deep technical competence but also an ongoing commitment to applied geoscience, interdisciplinary research, and academic mentorship.

Profile

Orcid

Education

Massine Bouchakour began his formal education in sedimentology with an MSc (Hons) at the University of Sciences and Technology Houari-Boumédiène (USTHB) in Algeria, focusing on Paleozoic stratigraphy and sedimentary processes in the Ougarta Basin. His thesis, awarded first-class honors, laid the groundwork for his interest in sequence stratigraphy and basin evolution. He later pursued a PhD at Southwest Petroleum University (SWPU) in China, where he specialized in seismic interpretation of submarine channels and their interaction with tectonic structures. Supported by the Sichuan Provincial Government and the National Natural Science Foundation of China (NSFC), his doctoral research explored geomorphological controls and depositional patterns in the Niger Delta. His ongoing postdoctoral work at SWPU further extends this expertise into global deep-marine systems.

Experience

With over a decade of academic and applied research experience, Bouchakour has played key roles in several international and industry-sponsored projects. His expertise spans seismic geomorphology, stratigraphy, and reservoir characterization. During his postdoctoral tenure, he has collaborated with institutions in Portugal, Romania, and the UK, contributing to efforts funded by CNOOC International and SINOPEC. He has also been instrumental in supervising PhD students and mentoring laboratory research in seismic and borehole data analysis. His career is marked by leadership in developing predictive models for deep-marine sand distribution and contributing to research initiatives such as the Deep-marine Sedimentary Architecture Knowledge Store. He is actively involved in scientific communication, presenting at major conferences, and publishing in top-tier geology journals.

Research Interests

Massine Bouchakour’s research interests center on understanding the architecture and evolution of deep-water depositional systems, particularly in tectonically active margins. He investigates sedimentary processes, seismic facies, sequence stratigraphy, and reservoir sand connectivity using multi-scale data, including 3D seismic surveys and core analysis. His work emphasizes the role of structural deformation in influencing sediment routing and accumulation, as well as the implications for hydrocarbon exploration and offshore carbon storage. He is equally invested in seismic attribute interpretation, field-outcrop integration, and the development of novel geological models to predict subsurface behavior and optimize production well designs.

Awards and Grants

Throughout his career, Bouchakour has earned significant recognition through competitive academic and industrial funding. These include the Chengdu Postdoctoral Research Station grant (2023) and a major NSFC-funded project (2020) supporting his PhD work. He also received the SWPU PhD scholarship with full tuition and accommodation support. In addition, his contributions to industrial research have been recognized in projects sponsored by CNOOC and SINOPEC, where he supported reservoir modeling, structural analysis, and seismic interpretation. Notably, his 2022 paper in Marine and Petroleum Geology was ranked among the top ten downloaded papers by SSRN in the field of marine sediments.

Publications

Bouchakour has authored impactful publications across international peer-reviewed journals. His 2025 paper in Basin Research, titled “Kinematics of submarine channels in response to bank failures,” provides insights into slope instability effects on channel migration.

His 2024 article in Marine and Petroleum Geology, “Compartmentalization of submarine channel splays controlled by growth faults and mud diapir,” explores fault-controlled sediment distribution. Another 2023 Basin Research study investigates “Lateral migration and channel bend morphology around growing folds” in the Niger Delta.

His 2022 work in Marine and Petroleum Geology, “Evolution of submarine channel morphology in intra-slope mini-basins,” based on 3D seismic data, has been widely cited for its methodological rigor.

His collaboration in a 2025 Marine and Petroleum Geology paper, “Tectono-stratigraphic evolution of multiphase rifts,” and two co-authored 2024–2025 stratigraphy-focused publications in Journal of Palaeogeography and Oil and Gas Geology have further solidified his status as a respected geoscientist.

These works have been cited in numerous geological modeling and sedimentology studies globally.

Conclusion

Massine Bouchakour represents a new generation of geoscientists whose global experience, technical versatility, and interdisciplinary insight position him as a leader in marine sedimentology and subsurface geological research. Through his ongoing commitment to applied geoscience, teaching, and international collaboration, he continues to make meaningful contributions to both academic knowledge and industry practice. His research outputs not only enrich scientific understanding but also provide practical frameworks for addressing critical challenges in energy exploration and environmental sustainability.