Jingye Liu | Future of Fossil Fuels and Energy Transition | Best Researcher Award

Dr. Jingye Liu | Future of Fossil Fuels and Energy Transition | Best Researcher Award

Doctoral Student at China University of Mining and Technology (Beijing), China

Jingye Liu is a promising early-career scholar in the field of management science and engineering with a focus on energy systems and supply chain security. Currently pursuing his doctoral studies at the School of Management, China University of Mining and Technology (Beijing), Liu demonstrates a strong commitment to addressing critical issues in global energy supply chains. His research integrates complex quantitative models and real-world policy relevance, contributing meaningful insights into China’s crude oil security strategies. Despite being at the early stages of his academic journey, Liu has already authored several influential publications in prestigious journals and is actively engaged in collaborative, policy-driven research that tackles geopolitical energy challenges.

Profile

Scopus

Education

Jingye Liu is undertaking a Ph.D. in Management Science and Engineering at the China University of Mining and Technology (Beijing), which commenced in September 2023 and is expected to conclude in June 2027. Under the supervision of Professor Rijia Ding, his doctoral work is rooted in multidisciplinary methodologies, combining systems engineering, energy economics, and data-driven decision-making. His academic foundation supports an applied approach to analyzing the energy sector, particularly focused on crude oil supply chain dynamics and national energy security frameworks.

Experience

Although still a Ph.D. candidate, Liu has accumulated substantial experience through collaborative academic research and publication efforts. Working alongside faculty and other researchers, he has been integrally involved in national-level studies evaluating the structure and vulnerabilities of China’s energy systems. His role often includes constructing evaluation models, analyzing large datasets, and interpreting policy implications based on empirical outcomes. Through his research, Liu has developed a nuanced understanding of strategic petroleum reserves, maritime logistics, and risk mitigation strategies. His capacity for teamwork, quantitative analysis, and strategic thinking has earned him recognition among peers and mentors alike.

Research Interest

Jingye Liu’s primary research interests lie in the areas of energy policy, supply chain security, and risk assessment in the context of geopolitical and domestic variables. He is particularly invested in exploring the vulnerabilities and optimization strategies within China’s crude oil supply chain. His work involves employing life-cycle analysis, DEA-like models, and system dynamics to evaluate security performance and provide evidence-based recommendations. Liu is also interested in renewable energy integration, international energy cooperation, and the development of early-warning systems for energy risk monitoring, aligning with global efforts toward sustainable and resilient energy infrastructures.

Award

While still building his academic career, Jingye Liu has earned early recognition through participation in national research projects and contribution to high-impact publications. His co-authored article in Energy Strategy Reviews, a leading journal in energy policy and strategy, stands as a testament to his growing influence in the field. Though no formal awards are listed in the resume, his selection to work on national-level energy risk evaluation projects reflects a form of institutional acknowledgment and academic trust that reinforces the merit of his contributions.

Publication

Jingye Liu has published impactful research in peer-reviewed journals, notably contributing to the following article:

Accessing the security of crude oil supply chain: The case of China, published in Energy Strategy Reviews, Volume 59, May 2025 (Cited by: [data not specified]). Co-authored with Fengqi Guo, Ying Shi, Rijia Ding, and Zhen Chen, this study presents a comprehensive life-cycle risk assessment model to evaluate China’s crude oil supply chain from 2012 to 2022.

The article offers policy recommendations to mitigate upstream vulnerabilities and enhance national energy resilience through expanded strategic reserves and maritime autonomy.

Although this is his most prominently documented publication, Liu is actively engaged in research that is expected to yield further high-quality outputs, reinforcing his academic trajectory and potential impact on the field.

Conclusion

Jingye Liu represents the next generation of researchers committed to securing global and national energy systems through rigorous analytical methods and policy-relevant research. His doctoral journey is already marked by meaningful contributions, including a major journal publication and active participation in strategic research collaborations. With a foundation in management science and engineering and a focus on real-world energy challenges, Liu is well-positioned to contribute significantly to academic and policy discussions in the coming years. His nomination for this award is supported by his academic rigor, innovative research focus, and evident potential to shape the future of energy system analysis and management.

Rashed Sahraeian | Sustainability in Oil and Gas | Best Scholar Award

Prof. Dr. Rashed Sahraeian | Sustainability in Oil and Gas | Best Scholar Award

Professor at Shahed University, Iran

Professor Rashed Sahraeian is a distinguished full professor in the Department of Industrial Engineering at Shahed University, Tehran, Iran. His career reflects a deep dedication to the fields of optimization, supply chain management (SCM), facility location problems (FLP), and location-routing problems (LRP). Professor Sahraeian is widely recognized for his extensive contributions to academia through impactful research, prolific publications, mentorship of graduate students, and active participation in peer reviewing for top international journals. His scholarly excellence and commitment to industrial engineering have made him a prominent figure both nationally and internationally.

Profile

Google Scholar

Education

Professor Sahraeian’s educational foundation is rooted in industrial engineering, where he specialized in operations research and optimization methodologies. Throughout his academic training, he developed a keen interest in complex decision-making models, quantitative analysis, and supply chain design. His formal education provided him with advanced competencies in mathematical modeling, computational techniques, and logistics systems, setting a robust stage for his future contributions to the domain.

Experience

With an academic career spanning over two decades, Professor Sahraeian has amassed extensive experience in teaching, research, and supervision. He has taught specialized courses including Facility Layout and Location, Supply Chain Management, Scheduling and Sequencing, and Integer Programming. As a dedicated mentor, he has supervised over 55 Master’s theses and 12 Ph.D. dissertations, nurturing the next generation of engineers and researchers. His practical involvement extends beyond academia, where he applies his research findings to real-world industrial problems, emphasizing sustainable and resilient supply chain solutions. Furthermore, his active role as a reviewer for high-impact journals underscores his expertise and reputation in the global academic community.

Research Interest

Professor Sahraeian’s primary research interests encompass optimization in industrial systems, closed-loop supply chain design, facility location under uncertainty, and robust scheduling. He is particularly passionate about solving multi-objective optimization problems in logistics and production environments, employing innovative methods such as hybrid evolutionary algorithms, constraint programming, and grey system theory. His recent work also extends into sustainable supply chain network design, considering environmental factors and resilience against disruptions, aligning closely with contemporary industrial needs and global sustainability goals.

Award

Throughout his academic journey, Professor Sahraeian has been recognized for his outstanding research and educational contributions. He has earned awards and acknowledgments for his significant role in advancing industrial engineering, particularly for his impactful publications and excellence in student supervision. His recognition as a leading figure in optimization and supply chain management is further evidenced by his continuous invitations to review papers for prestigious journals such as the Journal of Cleaner Production, Computers & Industrial Engineering, and Applied Mathematical Modelling.

Publication

Among his many publications, seven notable works illustrate his influential contributions.

(1) In 2012, he co-authored “An interactive possibilistic programming approach for a multi-objective closed-loop supply chain network under uncertainty” in Applied Mathematical Modelling (cited by 340 articles).

(2) In 2013, he published “The hierarchical hub covering problem with an innovative allocation procedure covering radiuses” in Scientia Iranica (cited by 85 articles).

(3) In 2014, his study on “Dynamic multi-commodity inventory and facility location problem in steel supply chain network design” appeared in the International Journal of Advanced Manufacturing Technology (cited by 110 articles).

(4) In 2015, he explored “Optimal modeling and evaluation of job shops with a total weighted tardiness objective” in Applied Mathematical Modelling (cited by 92 articles).

(5) That same year, he co-authored “Augmented ε-constraint method in multi-objective flow shop problem with past sequence setup times” in the International Journal of Production Research (cited by 70 articles).

(6) In 2016, he contributed “MULTI-OBJECTIVE OPTIMIZATION OF INTEGRATED LOT-SIZING AND SCHEDULING PROBLEM IN FLEXIBLE JOB SHOPS” to RAIRO Operations Research (cited by 60 articles).

(7) In 2024, he published “Decision-Making Approach to Design a Sustainable Photovoltaic Closed-Loop Supply Chain Considering Market Share for Electric Vehicle Energy” in Sustainability (garnering growing citations). These selected publications emphasize his research depth and broad application impact.

Conclusion

In conclusion, Professor Rashed Sahraeian has made outstanding contributions to the advancement of industrial engineering, particularly in optimization and supply chain network design. His research innovations, leadership in education, and strong publication record position him as a leading figure in his field. Through a combination of theoretical rigor and practical relevance, he continues to influence the discipline of industrial engineering, inspiring students and colleagues alike. His career trajectory exemplifies academic excellence, practical relevance, and a deep commitment to solving real-world industrial challenges through advanced research methodologies.

Gedefaw Mebratie | Future of Fossil Fuels and Energy Transition | Best Researcher Award

Mr. Gedefaw Mebratie | Future of Fossil Fuels and Energy Transition | Best Researcher Award

Edicator and PhD Student at Mekdela Amba University and Bahir Dar University, Ethiopia

Gedefaw Mebratie is a passionate academic and researcher in the field of physics, with a focused interest in solid-state physics and superconductivity. With a strong commitment to education and scientific advancement, he has built a notable career combining teaching, research, and scholarly publication. Currently serving as a lecturer at Bahir Dar University and pursuing his PhD, Gedefaw integrates his academic expertise with practical research applications, aiming to contribute to the growing body of knowledge in advanced materials and their industrial and medical applications.

Profile

Orcid

Education

Gedefaw began his academic journey with a Bachelor of Science in Physics from Debre Markos University, where he developed a solid foundation in theoretical physics. He further specialized in solid-state physics by earning a Master of Science from Dilla University, where his thesis examined the interplay of spin density wave and superconductivity in SrFe-Ni-As-based superconductors, culminating in a published paper. Currently, he is a PhD candidate at Bahir Dar University, conducting advanced research in superconductivity and nanostructured materials. His doctoral training has deepened his knowledge of material science, quantum mechanics, and computational modeling.

Experience

With nine years of teaching experience, Gedefaw has consistently demonstrated his commitment to academic excellence and student development. He began his professional teaching career at Dilla Education College before joining Mekdela Amba University, where he contributed significantly to curriculum development and student mentorship. Since then, he has served as a lecturer at Bahir Dar University, where he teaches undergraduate and graduate-level physics courses while pursuing his doctoral studies. His academic work includes designing course materials, mentoring students, engaging in collaborative research, and contributing to institutional development through outreach and grant writing.

Research Interest

Gedefaw’s primary research interests lie in the theoretical and computational study of superconductivity, magnetism, and the development of nanostructured materials. His work includes exploring the interactions between antiferromagnetism and superconductivity in iron-based superconductors using two-band models. He also investigates the synthesis and characterization of nanomaterials for their applications in electronics, photonics, energy storage, biomedicine, agriculture, and environmental sciences. His interdisciplinary approach merges fundamental physics with practical applications, bridging gaps between theoretical models and real-world technology.

Awards

Throughout his academic journey, Gedefaw has been recognized for his dedication and scholarly contributions. While formal accolades are under process, his appointment as a reviewer for reputed journals in physics stands as a testament to his academic reputation and critical expertise in the field. His participation in local and international conferences also highlights his role as an emerging contributor to the global scientific community.

Publications

Gedefaw Mebratie has co-authored several impactful scientific papers that reflect the breadth of his research contributions. Among his key publications:

Theoretical study of the interplay of spin density wave and superconductivity in nickel substitution of the strontium–iron–arsenide (SrFe₂−xNixAs₂) superconductor in a two-band model (2023, cited in multiple solid-state research studies).

Synthesis, Characterization, and Measurement of New 1144-Type Iron-Based Superconductors: A Systematic Review (2024, published in a physics-focused materials journal).

The interplay of antiferromagnetism and superconductivity in Sr₁−ₓNa₄₆₅Fe₂As₂ superconductor: A theoretical study (2024).

Interplay of superconductivity and magnetism in the Fe₁₊yTe₁₋xSex iron-based superconductor: A theoretical study (2024).

Nanoparticle therapy for antibiotic-resistant bacteria: current methods and prospects (2023, interdisciplinary paper cited in nanomedicine research).

Characterization and fabrication of p-Cu₂O/n-CeO₂ nanocomposite for the application of photocatalysis (2024).

Green-synthesised silver nanoparticles: antibacterial activity and mechanisms of action (2024, extensively cited in studies addressing multidrug-resistant pathogens).

Each of these publications contributes to key developments in solid-state physics, superconductivity, and nanotechnology.

Conclusion

Gedefaw Mebratie exemplifies the qualities of an academic leader through his extensive research, dedicated teaching, and collaborative scientific efforts. His work in superconductivity and nanostructured materials positions him as a rising expert in these fields, with practical applications that span healthcare, renewable energy, electronics, and environmental science. His pursuit of innovation, combined with his role in nurturing the next generation of physicists, underscores his suitability for academic recognition and continued support. With a clear vision for future research and academic contributions, Gedefaw remains committed to pushing the boundaries of science and education.