Gabriel Dragos Vasilescu | Sustainable Development and Clean Energy | Best Academic Researcher Award

Prof. Gabriel Dragos Vasilescu | Sustainable Development and Clean Energy | Best Academic Researcher Award

Researcher at National Institute for Research and Development in Mine Safety and Protection to Explosion, Romania

Gabriel Dragoș Vasilescu is a highly distinguished Romanian researcher, engineer, and academic whose career has been defined by outstanding contributions to occupational safety, environmental protection, industrial risk assessment, and the management of explosive materials. With over 25 years of professional experience, he has become one of Romania’s foremost authorities in industrial engineering, particularly in the fields of mine safety, explosion prevention, and hazard mitigation. He currently holds the position of Scientific Researcher Grade I and serves as the Head of the Laboratory for Material Explosives and Pyrotechnic Articles at the National Institute for Research and Development in Mine Safety and Protection to Explosion (INCD INSEMEX Petroșani). He is also a dedicated academic, serving as a doctoral supervisor and associate professor at the University of Petroșani, where he is actively involved in the training of future engineers and researchers.

Profile

Scopus

Education

Dr. Vasilescu’s educational background laid a solid foundation for his scientific and technical achievements. He graduated in 1995 with a degree in Mining Machinery and Equipment Engineering from the Technical University of Petroșani, one of Romania’s premier institutions for mining and industrial studies. Driven by an unrelenting pursuit of excellence and innovation, he continued his academic journey and earned a Doctorate in Industrial Engineering from the University of Petroșani in 2006. Over the years, he has furthered his professional development through an array of specialized postgraduate studies and technical certifications. These include diplomas and certifications in risk and safety assessment, environmental auditing, noise and vibration measurement, and explosive safety management, obtained from respected institutions such as Brüel & Kjær University in Denmark, the Polytechnic University of Timișoara, and the National Research and Development Institute for Environmental Protection (INCDPM) Bucharest.

Experience

Vasilescu’s professional career spans nearly 30 years at the National Institute for Research and Development for Mine Safety and Explosion Protection (INCD INSEMEX Petroșani), Romania. Starting as a research assistant in 1995, he advanced through various roles, including Scientific Researcher III and Head of multiple laboratories such as the Risk Evaluation Laboratory and the Laboratory for Tests on Noise and Vibrations. Since April 2016, he has served as the Head of the Laboratory for Material Explosives and Pyrotechnic Articles. In these roles, he has managed risk evaluation projects, supervised technical safety research, developed occupational health guidelines, conducted field training, and led dissemination efforts at national and international forums. Vasilescu also contributes to academia as a doctoral supervisor and associate professor at the University of Petroșani.

Research Interests

His core research focuses on occupational safety, industrial risk assessment, environmental noise and vibration analysis, pyrotechnics safety, and technological innovation in hazard control systems. Vasilescu has consistently explored the intersection of engineering principles with health and environmental science, contributing significantly to developing frameworks for integrated management systems in workplace safety. His innovative work spans probabilistic modeling for risk diagnostics, automation of safety systems in mining, and the engineering of complex safety environments. His interdisciplinary approach has provided viable solutions for both civil explosives management and general occupational health systems.

Awards

Gabriel-Dragoș Vasilescu has received several prestigious recognitions for his innovative contributions to environmental protection and geological resource management. Between 2003 and 2005, he was honored with four awards at the International Exhibitions of Inventions – INVENTICA SIMPRO ROPET and INVENTOR – for his work on industrial safety systems. These awards reflect his dedication to advancing applied science for public and industrial welfare, recognizing his capability to translate theoretical models into practical and scalable safety solutions.

Publications

Vasilescu has authored and co-authored over 175 scientific papers, with many published in peer-reviewed journals and international conferences. A sample of his notable publications includes:

  1. “Methods for Analysis and Evaluation of Occupational Accidents and Diseases Risks,” Environmental Engineering and Management Journal, 2007 (Cited by 42 articles).

  2. “Establishing the Acceptable Risk Level in Occupational Accidents,” Environmental Engineering and Management Journal, 2007 (Cited by 38 articles).

  3. “Research in the Engineering of Complex Systems Safety,” Environmental Engineering and Management Journal, 2008 (Cited by 34 articles).

  4. “Advanced System for Risk Assessment of the Security Expressed in the Complex Labor System,” WSEAS Transactions on Advances in Engineering Education, 2010 (Cited by 31 articles).

  5. “Advanced Prediction Procedure for the Underground Stress Manifested in the Undermined Coal Bed Works,” WSEAS Transactions on Advances in Engineering Education, 2010 (Cited by 29 articles).

  6. “Equipment and Technology for Assessing Safety Parameters by Remote Control of the Mine Underground Atmosphere,” WSEAS Transactions, 2010 (Cited by 27 articles).

  7. “Book Review – Unconventional Methods to Analyse and Evaluate Occupational Risk,” Environmental Engineering and Management Journal, 2009 (Cited by 21 articles).

Conclusion

Gabriel-Dragoș Vasilescu stands out as a dynamic figure in the field of occupational and environmental safety research. With a unique blend of scientific rigor, educational leadership, and practical field expertise, he has played a pivotal role in improving the safety conditions in hazardous work environments. His academic contributions, policy-shaping research, and commitment to innovation make him an exceptional candidate for recognition in any prestigious award platform focused on scientific achievement, engineering excellence, or industrial safety.

Wu Zhineng | Health, Safety, and Environment (HSE) | Best Researcher Award

Ms. Wu Zhineng | Health, Safety, and Environment (HSE) | Best Researcher Award

Associate Professor at Hebei University of Technology, China

Dr. Wu Zhineng is an Associate Professor at the Hebei University of Technology and serves as the Deputy Director of the Institute of Contaminated Site Remediation. With a Ph.D. in Ecology from Nankai University, she has built a research career deeply focused on the remediation of contaminated environments, particularly through microbial strategies. Her contributions lie at the intersection of environmental microbiology and public health, with an emphasis on innovative biodegradation technologies for petroleum hydrocarbons and chlorinated compounds. Dr. Wu has authored over 30 peer-reviewed SCI papers and holds six patents, several of which are applied toward field-scale environmental remediation.

Profile

Orcid

Education

Dr. Wu earned her doctorate in Ecology from Nankai University in 2018, establishing a strong academic foundation in environmental science and microbiological applications in remediation. This academic training has fueled her expertise in addressing ecological degradation caused by industrial pollutants, enabling her to lead advanced research in soil and water decontamination using microbial consortia and engineered bio-materials.

Experience

Currently an Associate Professor and Master’s Supervisor at Hebei University of Technology, Dr. Wu has led four major national and provincial research projects. These include grants from the National Natural Science Foundation of China, the Science and Technology Program of Hebei Province, and regional programs in Henan and Hebei. Her responsibilities extend beyond teaching and research, involving leadership roles such as guiding student theses, coordinating inter-institutional collaborations, and managing laboratory and field studies on microbial and chemical soil decontamination.

Research Interest

Dr. Wu’s primary research interests revolve around microbial remediation, soil and groundwater pollution, and environmental health risks. She specializes in the use of facultative anaerobic and surfactant-producing bacteria to degrade petroleum hydrocarbons and chlorinated organics. Her recent work also explores the synergistic effects of microplastics and heavy metals on soil microbiomes, and the use of nano-zero-valent iron in enhancing bioremediation performance. Dr. Wu is deeply committed to advancing microbial-material coupled systems to transform in situ remediation practices into cost-effective, sustainable technologies.

Award

In recognition of her innovative contributions, Dr. Wu has been nominated for the Young Scientist Award. Her leadership in developing cutting-edge microbial technologies and translating them to field applications marks her as an emerging leader in environmental engineering. She has also served as a youth editorial board member for the Journal of Environmental Health and as a reviewer for several high-impact journals, underscoring her standing in the scientific community.

Publication

Dr. Wu has published extensively in high-ranking journals.

  1. Synergistic effects of polyethylene microplastics and cadmium on soil bacterial communities and metabolic functions, Journal of Environmental Chemical Engineering, 2025 – cited by 12 articles.

  2. Synergistic surfactant cleaning-bioaugmentation strategy enables deep remediation of heavily petroleum-contaminated soils, International Biodeterioration & Biodegradation, 2025 – cited by 8 articles.

  3. A slow-release reduction material of Escherichia sp. F1 coupled with micron iron powder achieves the remediation of trichloroethylene-contaminated soil, Journal of Environmental Management, 2024 – cited by 14 articles.

  4. S-ZVI@biochar constructs a directed electron transfer channel between dechlorinating bacteria, npj Clean Water, 2024 – cited by 10 articles.

  5. Recent advances and trends of trichloroethylene biodegradation: A critical review, Frontiers in Microbiology, 2022 – cited by 26 articles.

  6. Polycyclic aromatic hydrocarbons and PBDEs in urban road dust from Tianjin: pollution characteristics and health risks, Sustainable Cities and Society, 2022 – cited by 22 articles.

  7. Microbial community in indoor dusts from university dormitories: characteristics and potential pathogens, Atmospheric Pollution Research, 2021 – cited by 19 articles.

Conclusion

Dr. Wu Zhineng exemplifies the spirit of interdisciplinary innovation necessary for modern environmental remediation. Through her groundbreaking research in microbial ecology and environmental biotechnology, she has developed scalable, field-tested solutions that address pressing ecological and public health challenges. Her work not only enriches the scientific literature but also provides actionable technologies to combat industrial pollution. A dedicated researcher, mentor, and collaborator, Dr. Wu is an outstanding candidate for the Young Scientist Award, bringing both academic rigor and practical impact to the field of petroleum and environmental engineering.

Sameer Arora | Health, Safety, and Environment (HSE) | Best Researcher Award

Dr. Sameer Arora | Health, Safety, and Environment (HSE) | Best Researcher Award

Sector Specialist at National Institute of Urban Affairs, India

Sameer Arora is an accomplished environmental engineer specializing in water resource engineering and waste management. With extensive experience across academia, research institutions, and policy advisory roles, he has made significant contributions to urban environmental sustainability. His expertise spans integrated waste management, pollution control, climate resilience, and the implementation of sustainable environmental policies. Dr. Arora has worked with leading organizations, including the National Institute of Urban Affairs, Jhpiego-NISHTHA, the Central Pollution Control Board, and various academic institutions. His research primarily focuses on water quality modeling, air pollution assessment, and waste management strategies. Through his work, he aims to bridge the gap between research and practical environmental solutions, influencing sustainable urban development.

Profile

Scopus

Education

Dr. Sameer Arora holds a Ph.D. in Water Resource Engineering from the prestigious Indian Institute of Technology (IIT) Delhi, earned in 2021. His research at IIT Delhi focused on advanced modeling techniques for improving urban river water quality. Prior to this, he completed his M.Tech in Environmental Engineering from Delhi Technological University (DTU) in 2012, where he gained extensive knowledge of wastewater treatment technologies and environmental impact assessment. He began his academic journey with a B.Tech in Environmental Engineering from Guru Gobind Singh Indraprastha University (GGSIPU) in 2009, laying a strong foundation in sustainable engineering practices and environmental conservation.

Experience

Dr. Arora has amassed a wealth of experience across various sectors. Currently serving as a Sector Specialist in Waste Management at the National Institute of Urban Affairs, he is actively involved in assessing and improving urban waste management systems under the CITIIS 2.0 program. Previously, as a Technical Lead for Water and Waste Management at Jhpiego-NISHTHA, he played a pivotal role in integrating climate change adaptation and environmental sustainability in public healthcare facilities. His tenure at the Central Pollution Control Board as a Consultant in Science and Engineering involved extensive work in air and water pollution monitoring, regulatory framework analysis, and sustainable waste management. Additionally, he has held academic positions at Sharda University, G D Goenka University, and Galgotias University, where he contributed to teaching, research, and curriculum development in environmental engineering.

Research Interests

Dr. Arora’s research interests encompass a broad spectrum of environmental sustainability domains. His work extensively explores water quality modeling, particularly the development of predictive models for dissolved oxygen dynamics in urban rivers. He has also conducted significant research on air pollution analysis, industrial waste management, and e-mobility solutions. His interest in climate resilience has led to studies on carbon footprint assessment in healthcare facilities and strategic planning for environmental sustainability. With a focus on integrating technology with environmental conservation, he has employed machine learning, artificial intelligence, and statistical modeling to develop innovative solutions for environmental challenges.

Awards and Recognitions

Dr. Sameer Arora has received numerous accolades for his contributions to environmental research and policy. His work has been recognized by leading academic and governmental institutions, highlighting his commitment to sustainable urban development. He has been a key contributor to national environmental policies and has received appreciation for his efforts in waste management and air pollution control. Additionally, he has been invited as a guest speaker at various faculty development programs (FDPs) and short-term training programs (STTPs), further emphasizing his impact in the field.

Selected Publications

Arora, S., & Keshari, A.K. (2023). Implementing Machine Learning Algorithm to Model Reaeration Coefficient of Urbanized Rivers. Environmental Modeling & Assessment. (Cited by multiple studies on urban water modeling.)

Arora, S. (2023). Assessment of technological and financial challenges in upgradation of BS-III and BS-IV vehicles. International Journal of Vehicle Design.

Arora, S., & Keshari, A.K. (2023). Implication of dissolved nitrogen dynamics of urban rivers using multivariate regression and structural equation modeling. CLEAN–Soil, Air, Water.

Arora, S., & Gargava, P. (2023). E-Mobility: Hindrances and motivators for policies implementation in India. Case Studies on Transport Policy.

Singh, K., Arora, S., & Gargava, P. (2023). Waste paper trade and recycling policy in India: a review. International Journal of Ecology and Environmental Sciences.

Arora, S., & Keshari, A.K. (2022). Modeling re-aeration of rivers using predictive models and developed ANN models under varying hydrodynamic conditions. Hydrological Sciences Journal.

Arora, S., & Keshari, A.K. (2021). ANFIS-ARIMA modeling for scheming re-aeration of hydrologically altered rivers. Journal of Hydrology.

Conclusion

Dr. Sameer Arora’s extensive experience, strong academic background, and impactful research in environmental sustainability position him as a leading expert in his field. His commitment to addressing pressing environmental challenges, particularly in waste management, water quality modeling, and pollution control, has contributed to the advancement of sustainable urban infrastructure. Through his policy advisory roles and academic contributions, he continues to drive meaningful change in the domain of environmental engineering. His work not only influences research and industry practices but also shapes policies for a cleaner and more sustainable future.