Jinyou Dai | Oil and gas field Development and Geology | Best Researcher Award

Assoc. Prof. Dr. Jinyou Dai | Oil and gas field Development and Geology | Best Researcher Award

Associate Professor at China University of Petroleum, Beijing, China

Dr. Jinyou Dai is an accomplished Associate Professor at the School of Petroleum Engineering, China University of Petroleum (Beijing), with over two decades of academic and research experience in petroleum engineering and reservoir geology. He has contributed significantly to the understanding and advancement of enhanced oil recovery (EOR), tight gas reservoir development, and pore-scale modeling. His combined academic rigor and applied research efforts have made notable impacts in both academia and industry.

Profile

Scopus

Education

Dr. Dai earned his Bachelor’s degree in Petroleum and Natural Gas Geological Exploration from China University of Petroleum (East China) in 1997. He pursued a Master’s in Mineral Survey and Exploration at China University of Petroleum (Beijing), graduating in 2000, and completed his Ph.D. in Geological Resources and Geological Engineering in 2003 from the same institution. He subsequently conducted postdoctoral research at China University of Petroleum (Beijing) from 2003 to 2005.

Experience

Following his postdoctoral fellowship, Dr. Dai began his academic career as a Lecturer in 2005 and became an Associate Researcher in 2008 at China University of Petroleum (Beijing). In 2021, he was promoted to Associate Professor. His work encompasses both academic teaching and leading-edge research. He has led or participated in several state and industry-funded research projects, collaborating with leading oilfield companies including Changqing and Daqing Oilfields, focusing on reservoir characterization, production optimization, and enhanced oil recovery.

Research Interest

Dr. Dai’s primary research interests include tight sandstone reservoir development, EOR mechanisms, polymer-water flow in porous media, and pore-throat structure simulation using advanced modeling techniques. He integrates theoretical approaches with field data to optimize oil and gas recovery, and has made key contributions to understanding capillary pressure behavior, recovery factor evaluation, and multi-phase flow characteristics in complex reservoirs.

Award

Dr. Dai has received multiple prestigious recognitions for his scientific contributions. Notably, he was a co-recipient of the First-Class Provincial Award for Invention in 2023 from the China Petroleum and Chemical Automation Application Association, honoring his innovations in efficient development of large tight sandstone gas fields. In 2007, he also received the Second-Class Science and Technology Progress Award from the Ministry of Education for his contributions to complex gas reservoir development theory and applications.

Publication

Dr. Dai has authored numerous impactful publications, including:

(1) Research on the integrated calculation method of current recovery and limited recovery in tight sandstone gas reservoirs, Frontiers in Earth Science, 2024 — cited for its novel recovery modeling approach.
(2) Study on Applicability of Ball-and-Stick Model in Reservoir Pore-Throat Network Simulation, Processes, 2025 — foundational for pore-throat network modeling.
(3) 常规压汞-恒速压汞联合曲线构型模式及其指示意义, 新疆石油地质, 2024 — explored capillary pressure curves and their implications.
(4) Distribution regularity and formation mechanism of gas and water in the western area of Sulige gas field, Petroleum Exploration and Development, 2012 — a detailed study of gas-water distribution mechanisms.
(5) 鄂尔多斯盆地延长组绿泥石膜的形成机制, Journal of China University of Petroleum (Natural Science Edition), 2016 — on the formation mechanisms of chlorite films.

These works have been cited in studies related to pore-scale modeling, reservoir simulation, and EOR strategies, illustrating their academic and practical value.

Conclusion

Dr. Jinyou Dai represents a rare blend of academic excellence and applied industry relevance. Through his pioneering research, extensive publication record, and innovative technologies, he continues to influence petroleum engineering practices both within China and internationally. His commitment to advancing reservoir engineering theory and his role in transforming field operations through scientific insight make him a highly deserving candidate for this award.

Taiba Kouser | Petroleum Engineering | Best Researcher Award

Dr. Taiba Kouser | Petroleum Engineering | Best Researcher Award

Postdoctoral Fellow at King Fahd University of Petroleum and Minerals Dhahran, Saudi Arabia

Dr. Taiba Kouser is a distinguished postdoctoral researcher at the Advanced Research Center for Modeling and Simulation Technologies (ARCMST), King Fahd University of Petroleum and Minerals (KFUPM), where she has been contributing significantly to the advancement of computational fluid dynamics (CFD). Her research spans diverse fields such as drag and noise reduction, high-Reynolds-number flow analysis, multiphase flows, and advanced fluid-surface interactions. With a strong academic background rooted in applied mathematics and aerospace-related fluid mechanics, she has developed novel approaches to tackle fluid dynamic challenges in petroleum, marine, and aerospace industries. Dr. Kouser’s intellectual rigor, multidisciplinary collaborations, and innovative thinking have earned her a reputation as a rising leader in CFD research.

Profile

Scopus

Education

Dr. Kouser earned her Ph.D. from Huazhong University of Science and Technology (HUST), Wuhan, China, where she specialized in low Reynolds number flow behaviors and noise suppression mechanisms via superhydrophobic surfaces. Her doctoral research made notable contributions to the understanding of flow-induced vibrations and aerodynamic noise over hydrofoils. Prior to her Ph.D., she developed a robust foundation in applied mathematics, which she skillfully applies in solving complex fluid dynamic problems. Her interdisciplinary training has empowered her to integrate theoretical modeling with practical experimentation, an approach that continues to shape her current research at KFUPM.

Experience

Over the years, Dr. Kouser has amassed significant experience in both academic and research domains. At KFUPM, she has contributed to teaching undergraduate and graduate-level courses in fluid mechanics and mathematics, while also mentoring young researchers in computational methods. Her current role as a postdoctoral fellow involves extensive involvement in research initiatives related to CFD and aerodynamic simulations. Dr. Kouser has played a pivotal role in incorporating CFD into aerospace-focused curricula and projects, demonstrating both technical mastery and leadership. Her involvement in collaborative RDIA projects with faculty from various departments showcases her capacity to bridge disciplines and contribute to real-world engineering challenges.

Research Interest

Dr. Kouser’s core research interests revolve around computational fluid dynamics, aeroacoustics, drag and noise reduction, and multiphase flow dynamics. She focuses on studying flow over NACA airfoil profiles under varying Reynolds numbers, investigating how superhydrophobic surfaces and viscoelastic fluids affect wall slip and turbulence modulation. Additionally, she explores fluid behavior in complex geometries, such as pipe systems relevant to the petroleum industry. Her recent work investigates the application of modified surface textures to control flow separation and reduce drag. Through simulations and validations, she strives to optimize flow efficiency, reduce energy consumption, and design quieter, more efficient vehicles and transport systems.

Awards

Dr. Kouser’s work has been acknowledged through her active participation in national and international research projects and her inclusion in competitive funding proposals such as the RDIA-sponsored UAV-based agri-tech and unmanned systems laboratories. Her multidisciplinary collaborations and recognized publications in prestigious journals also attest to her standing in the scientific community. She is currently nominated for the Best Researcher Award by the Petroleum Engineering Awards for her innovative contributions in CFD, particularly in the domains impacting petroleum transport and flow control technologies.

Publications

Dr. Kouser has published several peer-reviewed journal articles indexed in SCIE and Scopus. Her recent publications include:

(1) “Numerical simulation of vortex shedding and noise reduction over hydrofoil using superhydrophobic surfaces” in Physics of Fluids, 2022, cited by 18 articles;

(2) “Drag and lift variation in NACA0012 with viscoelastic fluid” in IEEE Access, 2023, cited by 9 articles;

(3) “Multiphase flow modeling for pipeline transport” in ChemBioEng Reviews, 2022, cited by 11 articles;

(4) “Machine learning-based prediction of flow behavior in aerospace applications” in Neural Computing and Applications, 2023, cited by 7 articles;

(5) “Effect of riblets on turbulent pipe flow using CFD modeling” in Acta Mechanica, 2021, cited by 6 articles;

(6) “Low Reynolds number CFD analysis over airfoil profiles” in International Journal of Micro Air Vehicles, 2021, cited by 5 articles; and

(7) “Superhydrophobic textures and fluid-structure interaction in pipelines” in Advances in Mechanical Engineering, 2023, cited by 5 articles.

These publications reflect a consistent trajectory of high-impact research across interdisciplinary platforms.

Conclusion

Dr. Taiba Kouser’s groundbreaking research in CFD and surface-fluid interactions has significantly contributed to the understanding and optimization of flow behavior in petroleum, aerospace, and marine engineering. Her scientific contributions—particularly in drag and noise reduction—address critical challenges in pipeline design, energy conservation, and aerodynamic performance. Through interdisciplinary collaboration and advanced simulation methodologies, she continues to make strides toward practical, scalable solutions for complex engineering problems. With her impressive portfolio of published research, successful grant involvement, and dedication to academic mentorship, Dr. Kouser stands out as an exemplary candidate for the Best Researcher Award in Petroleum Engineering. Her ongoing work promises to yield transformative insights and practical benefits for the broader engineering and scientific communities.