Rabia Ahmad | Petroleum Engineering | Best Researcher Award

Dr. Rabia Ahmad | Petroleum Engineering | Best Researcher Award

Post-Doctoral Research Fellow at King Fahd University of Petroleum and Minerals (KFUPM), Dharan, Saudi Arabia

Rabia Ahmad is a dedicated postdoctoral research fellow at King Fahd University of Petroleum and Minerals, where she explores cutting-edge materials for sustainable energy solutions. Her academic and professional journey reflects a consistent commitment to research excellence in electrochemistry, energy storage, and nanomaterials. She has held diverse roles, including research associate and exchange scholar, gaining experience across Pakistan, the United States, and Saudi Arabia. Rabia has developed an impressive profile through interdisciplinary collaborations and innovation-driven research. Her expertise lies in the synthesis and characterization of novel materials that enhance the efficiency of batteries, supercapacitors, and electro-catalytic systems.

Profile

Google Scholar

Education

Rabia Ahmad holds a Ph.D. in Energy Systems Engineering from the U.S.-Pakistan Center for Advanced Studies in Energy, completed in 2022 at the National University of Sciences and Technology (NUST), Islamabad. Her doctoral work focused on advanced electrochemical materials, particularly for energy storage devices. She previously earned an M.Phil. in Chemistry from Gomal University in 2016, following a Master of Chemistry from Baha Uddin Zakariya University in 2008. Her academic foundation was laid with a Bachelor of Science from Government Degree College for Women, affiliated with BZU. This educational trajectory empowered her with theoretical and practical grounding in materials science.

Experience

Rabia Ahmad brings extensive multidisciplinary experience in materials chemistry and electrochemical systems. She currently serves as a postdoctoral fellow at KFUPM, working on aluminum-air batteries and petroleum coke-derived carbon for electrocatalysis. Previously, she was a research associate at NUST, contributing to electric vehicle components, LFP electrode development, and MOF-based catalysts. Her tenure as a research exchange scholar at Indiana University–Purdue University Indianapolis enriched her expertise in MXene composites. From 2017–2021, she served as a research assistant at NUST, mentoring students and conducting lab demonstrations. Her career reflects a continual focus on sustainable and scalable energy materials.

Research Interest

Rabia Ahmad’s research interests span energy materials and electrochemical systems, with a focus on Metal Organic Frameworks (MOFs), MXenes, nanoporous carbon electrodes, and petroleum coke derivatives. She is particularly invested in the development of hybrid supercapacitors, lithium-ion batteries (LIBs), and metal-air batteries with improved efficiency and sustainability. Her work extends into ORR/OER catalysis and advanced electrochemical characterizations such as cyclic voltammetry and impedance spectroscopy. Her scientific curiosity also includes the synthesis of nanomaterials such as graphene oxide and metal sulfides. Her interdisciplinary approach integrates green chemistry with material innovation for next-generation energy devices.

Awards

Rabia Ahmad has received several accolades recognizing her contributions to energy research. In 2025, she won a Paper Presentation Award at The Electrochemical Society’s 247th Meeting for her work on hybrid capacitors using MXene-CNT composites. Earlier, in 2024, she was honored at the American Chemical Society Fall Conference for presenting on vacuum residue for electrocatalysis. She received a Best Poster Award at PU-AESM-2019 and was a lab demonstrator in multiple workshops at NUST. She also completed a prestigious M-Xene course at Drexel University in 2021 and was a USAID merit scholar during her Ph.D. studies. These honors underscore her excellence and impact.

Publications Top Notes

Rabia Ahmad has authored several influential papers in top-tier journals, contributing significantly to energy materials research:

  1. Effect of barbituric acid in regulating the Al anode/electrolyte interface – Journal of Power Sources, 2025.

  2. Influence of Mechanochemical Processing on Petroleum Coke – Journal of Industrial and Engineering Chemistry, 2025.

  3. Enhanced redox kinetics in ceria-doped MOFs – Journal of Industrial and Engineering Chemistry, 2025, explores supercapacitor electrodes.

  4. Harnessing M-Xenes for hydrogen storage – Renewable and Sustainable Energy Reviews, 2025, widely cited in green hydrogen discussions.

  5. Manganese-doped Ni-MOF catalysts for metal-air batteries – Materials Chemistry and Physics, 2025.

  6. Sustainable additives for Aluminium corrosion control – Journal of Electroanalytical Chemistry, 2025.

  7. M-Xenes and electrochemical reduction reactions – Chemical Engineering Journal, 2025, outlining new frontiers in M-Xene chemistry.

Conclusion

Rabia Ahmad is a rising leader in the energy materials research community. Her academic rigor, global collaborations, and impactful contributions to the field of electrochemical energy storage set her apart. Her work not only advances scientific understanding but also aligns with global sustainability goals through green energy innovations. Through high-impact publications, patents, and award-winning presentations, she has demonstrated her capacity for transformative research. As she continues her postdoctoral work on aluminum-air batteries and sustainable electro-catalysts, Rabia remains committed to pushing the frontiers of material science for a cleaner and more efficient energy future.

Tahir Cetin Akinci | Data Analytics in Upstream Operations | Best Research Article Award

Dr. Tahir Cetin Akinci | Data Analytics in Upstream Operations | Best Research Article Award

Scientist at University of California Riverside, United States

Dr. Tahir Çetin Akıncı is a distinguished academician and researcher in electrical engineering, particularly known for his impactful work in artificial intelligence, renewable energy, and advanced signal processing. With a professional trajectory that spans over two decades, he has consistently contributed to advancing knowledge and innovation in intelligent systems and power electronics. His commitment to both academic excellence and real-world problem-solving has earned him global recognition, positioning him as a thought leader in his field.

Profile

Orcid

Education

Dr. Akıncı began his academic journey at Klaipeda University in Lithuania, earning his undergraduate degree in electrical engineering in 2000. He later pursued graduate studies at Marmara University, where he completed his master’s degree in 2005 and Ph.D. in 2010. These formative academic experiences laid the groundwork for his future research directions, particularly in the domains of energy systems and machine learning applications. His educational path is marked by a solid foundation in electrical systems theory, enriched by practical insights into data-driven methodologies.

Experience

His professional career commenced as a Research Assistant at Marmara University, where he served from 2003 to 2010. He then joined Istanbul Technical University (ITU), advancing through academic ranks to become a full professor by 2020. Currently, Dr. Akıncı serves at the University of California, Riverside, contributing to international collaborations and high-impact research initiatives. Throughout his tenure in academia, he has mentored students, led research projects, and collaborated across disciplines to address critical engineering challenges.

Research Interest

Dr. Akıncı’s research interests are both broad and deep, encompassing renewable energy systems, artificial neural networks, deep learning, machine learning, cognitive systems, signal processing, and data analysis. His multidisciplinary approach allows him to tackle complex problems—ranging from optimizing photovoltaic systems to diagnosing electrical motor faults using AI. His work in renewable energy technologies and smart systems not only enhances system efficiencies but also aligns with global sustainability goals. He is particularly passionate about the integration of AI in diagnostics, predictive maintenance, and energy management, striving to create systems that are not only intelligent but also resilient and sustainable.

Award

His contributions have been recognized through multiple prestigious awards, most notably the International Young Scientist Excellence Award and the Best Researcher Award in 2022. These accolades reflect his pioneering work and the high regard he holds within the scientific community. In addition to these honors, Dr. Akıncı has played critical roles as editor and guest editor for leading journals and serves on scientific committees of several high-profile international conferences, further underscoring his influence in shaping future directions in electrical engineering and AI.

Publication

Among his extensive list of publications, several recent papers stand out for their innovative approaches and significant citations. For instance:

“Sustainable pathways for hydrogen production: Metrics, trends, and strategies for a zero-carbon future,” Sustainable Energy Technologies and Assessments, 2025 – cited for its strategic insights on green hydrogen.

“Revealing GLCM Metric Variations across Plant Disease Dataset,” Electronics, 2024 – contributes to deep learning applications in agriculture.

“Optimization of Neuro-controller Application for MPPT in Photovoltaic Systems,” Electric Power Components and Systems, 2024 – enhances energy efficiency using AI.

“Time Series Forecasting Utilizing AutoML,” Information, 2024 – applies automated ML for forecasting in diverse datasets.

“Advanced Dual RNN Architecture for Electrical Motor Fault Classification,” IEEE Access, 2023 – highly cited for its innovation in motor diagnostics.

“Machine Learning-Based Error Correction Codes and Communication Protocols for Power Line Communication,” IEEE Access, 2023 – strengthens smart grid reliability.

“Effect of LED Light Frequency on an Object in Terms of Visual Comfort,” Electric Power Components and Systems, 2024 – explores visual ergonomics in energy-efficient lighting.

Conclusion

In conclusion, Dr. Tahir Çetin Akıncı exemplifies the ideal candidate for this award through his unwavering commitment to scientific advancement, innovation in engineering education, and leadership in multidisciplinary research. His work bridges the gap between theory and application, aiming to develop technologies that not only solve current engineering problems but also anticipate future challenges. Through his dedication, he continues to inspire the next generation of engineers and scientists, fostering a more intelligent and sustainable world.