Gabriel Dragos Vasilescu | Sustainable Development and Clean Energy | Best Academic Researcher Award

Prof. Gabriel Dragos Vasilescu | Sustainable Development and Clean Energy | Best Academic Researcher Award

Researcher at National Institute for Research and Development in Mine Safety and Protection to Explosion, Romania

Gabriel Dragoș Vasilescu is a highly distinguished Romanian researcher, engineer, and academic whose career has been defined by outstanding contributions to occupational safety, environmental protection, industrial risk assessment, and the management of explosive materials. With over 25 years of professional experience, he has become one of Romania’s foremost authorities in industrial engineering, particularly in the fields of mine safety, explosion prevention, and hazard mitigation. He currently holds the position of Scientific Researcher Grade I and serves as the Head of the Laboratory for Material Explosives and Pyrotechnic Articles at the National Institute for Research and Development in Mine Safety and Protection to Explosion (INCD INSEMEX Petroșani). He is also a dedicated academic, serving as a doctoral supervisor and associate professor at the University of Petroșani, where he is actively involved in the training of future engineers and researchers.

Profile

Scopus

Education

Dr. Vasilescu’s educational background laid a solid foundation for his scientific and technical achievements. He graduated in 1995 with a degree in Mining Machinery and Equipment Engineering from the Technical University of Petroșani, one of Romania’s premier institutions for mining and industrial studies. Driven by an unrelenting pursuit of excellence and innovation, he continued his academic journey and earned a Doctorate in Industrial Engineering from the University of Petroșani in 2006. Over the years, he has furthered his professional development through an array of specialized postgraduate studies and technical certifications. These include diplomas and certifications in risk and safety assessment, environmental auditing, noise and vibration measurement, and explosive safety management, obtained from respected institutions such as Brüel & Kjær University in Denmark, the Polytechnic University of Timișoara, and the National Research and Development Institute for Environmental Protection (INCDPM) Bucharest.

Experience

Vasilescu’s professional career spans nearly 30 years at the National Institute for Research and Development for Mine Safety and Explosion Protection (INCD INSEMEX Petroșani), Romania. Starting as a research assistant in 1995, he advanced through various roles, including Scientific Researcher III and Head of multiple laboratories such as the Risk Evaluation Laboratory and the Laboratory for Tests on Noise and Vibrations. Since April 2016, he has served as the Head of the Laboratory for Material Explosives and Pyrotechnic Articles. In these roles, he has managed risk evaluation projects, supervised technical safety research, developed occupational health guidelines, conducted field training, and led dissemination efforts at national and international forums. Vasilescu also contributes to academia as a doctoral supervisor and associate professor at the University of Petroșani.

Research Interests

His core research focuses on occupational safety, industrial risk assessment, environmental noise and vibration analysis, pyrotechnics safety, and technological innovation in hazard control systems. Vasilescu has consistently explored the intersection of engineering principles with health and environmental science, contributing significantly to developing frameworks for integrated management systems in workplace safety. His innovative work spans probabilistic modeling for risk diagnostics, automation of safety systems in mining, and the engineering of complex safety environments. His interdisciplinary approach has provided viable solutions for both civil explosives management and general occupational health systems.

Awards

Gabriel-Dragoș Vasilescu has received several prestigious recognitions for his innovative contributions to environmental protection and geological resource management. Between 2003 and 2005, he was honored with four awards at the International Exhibitions of Inventions – INVENTICA SIMPRO ROPET and INVENTOR – for his work on industrial safety systems. These awards reflect his dedication to advancing applied science for public and industrial welfare, recognizing his capability to translate theoretical models into practical and scalable safety solutions.

Publications

Vasilescu has authored and co-authored over 175 scientific papers, with many published in peer-reviewed journals and international conferences. A sample of his notable publications includes:

  1. “Methods for Analysis and Evaluation of Occupational Accidents and Diseases Risks,” Environmental Engineering and Management Journal, 2007 (Cited by 42 articles).

  2. “Establishing the Acceptable Risk Level in Occupational Accidents,” Environmental Engineering and Management Journal, 2007 (Cited by 38 articles).

  3. “Research in the Engineering of Complex Systems Safety,” Environmental Engineering and Management Journal, 2008 (Cited by 34 articles).

  4. “Advanced System for Risk Assessment of the Security Expressed in the Complex Labor System,” WSEAS Transactions on Advances in Engineering Education, 2010 (Cited by 31 articles).

  5. “Advanced Prediction Procedure for the Underground Stress Manifested in the Undermined Coal Bed Works,” WSEAS Transactions on Advances in Engineering Education, 2010 (Cited by 29 articles).

  6. “Equipment and Technology for Assessing Safety Parameters by Remote Control of the Mine Underground Atmosphere,” WSEAS Transactions, 2010 (Cited by 27 articles).

  7. “Book Review – Unconventional Methods to Analyse and Evaluate Occupational Risk,” Environmental Engineering and Management Journal, 2009 (Cited by 21 articles).

Conclusion

Gabriel-Dragoș Vasilescu stands out as a dynamic figure in the field of occupational and environmental safety research. With a unique blend of scientific rigor, educational leadership, and practical field expertise, he has played a pivotal role in improving the safety conditions in hazardous work environments. His academic contributions, policy-shaping research, and commitment to innovation make him an exceptional candidate for recognition in any prestigious award platform focused on scientific achievement, engineering excellence, or industrial safety.

Fei Tang | Safety Science and Engineering | Best Researcher Award

Dr. Fei Tang | Safety Science and Engineering | Best Researcher Award

PhD candidate at China University of Mining & Technology, Beijing, China

Dr. Fei Tang is a dedicated PhD candidate at China University of Mining and Technology in Beijing, specializing in Safety Science and Engineering. His academic journey has been guided by a deep commitment to addressing significant global challenges related to pipeline safety, energy security, and environmental protection. Dr. Tang’s research interests are centered around pipeline leakage detection, the prevention and control of mine heat hazards, and applying machine learning technologies to enhance safety measures in these critical areas. His work focuses on the intersection of theoretical analysis and practical application, using advanced modeling and signal processing techniques to better understand the behavior of pipeline systems under stress, with the aim of mitigating the risks posed by pipeline failures. Dr. Tang’s innovative contributions are aimed at ensuring the integrity and reliability of energy infrastructure while minimizing potential environmental hazards.

Profile

Orcid

Education

Dr. Tang’s educational background is rooted in the principles of engineering and safety science. He is currently pursuing his doctoral studies at China University of Mining and Technology in Beijing, where his research focuses on the safety and integrity of pipeline systems, an area crucial for the energy industry and environmental sustainability. Prior to this, Dr. Tang completed both his undergraduate and master’s degrees, during which he built a solid foundation in engineering sciences, with a particular emphasis on safety engineering. His academic trajectory has been guided by a passion for research and problem-solving, with a keen interest in improving safety standards and operational efficiency within industries that rely on complex infrastructure, such as natural gas transportation and mining.

Experience

Dr. Tang’s professional experience is anchored in his role as a researcher at China University of Mining and Technology. His research is primarily focused on pipeline leakage and the corresponding safety issues in the context of natural gas transportation. He has worked extensively with fluid-structure coupling models to analyze how various factors such as pressure and leakage apertures influence pipeline systems. Additionally, Dr. Tang is involved in studying acoustic emission signals, a vital tool for detecting and localizing pipeline leaks. This research involves both theoretical modeling and empirical data analysis to develop systems that can identify pipeline leaks accurately and efficiently in real-time. Dr. Tang’s expertise also extends to using machine learning algorithms to predict potential failures and to automate risk assessment in pipeline systems. This combination of theoretical research and hands-on experimentation has equipped Dr. Tang with a comprehensive skill set to address some of the most pressing challenges in pipeline safety and environmental protection.

Research Interests

Dr. Tang’s research is primarily focused on the development of advanced methods for detecting pipeline leakage, preventing mine heat hazards, and applying machine learning to safety engineering. One of the cornerstones of his research is the study of pipeline leakage, which plays a critical role in the energy sector, where the integrity of pipeline infrastructure is essential for both operational safety and environmental protection. Dr. Tang has developed a fluid-structure coupling model to study the behavior of gas pipelines during leakage incidents, with a particular focus on how factors such as pressure and aperture size influence the flow rate, stress distribution, and displacement of pipeline structures. Furthermore, he investigates the relationship between the acoustic emission signals generated during leakage events and the structural parameters of the pipeline, utilizing techniques like Fast Fourier Transform (FFT) to analyze the frequency characteristics of leakage signals. This research is pivotal for developing more accurate detection methods that can reduce the risk of undetected leaks and improve overall safety in the energy transportation sector. Another key aspect of Dr. Tang’s research involves the application of machine learning techniques to pipeline safety, including predictive analytics for risk assessment and the automation of leakage detection processes, further enhancing the efficiency and accuracy of safety systems.

Awards

Dr. Tang’s groundbreaking work in the field of pipeline safety and energy transportation has earned him recognition in the form of various academic and professional awards. His research on pipeline leakage detection has not only contributed to the scientific community but also has practical implications for industries relying on the safety and integrity of pipeline systems. His accomplishments have led to him receiving multiple awards from the China University of Mining and Technology, which acknowledge his innovative research and dedication to advancing safety practices in the energy sector. These awards highlight his commitment to excellence in research and the positive impact his work has had on improving safety standards in both the academic and industrial spheres. His work continues to shape the future of pipeline safety, influencing future research and safety measures within the energy sector.

Publications

Dr. Tang has authored several peer-reviewed publications that demonstrate his expertise in safety science, pipeline leakage detection, and machine learning applications in safety engineering. His work has contributed significantly to the advancement of knowledge in these fields. Some of his key publications include:

Tang, F., et al. (2024). “Fluid-Structure Coupling Model of Gas Pipeline Leakage.” Journal of Pipeline Engineering, 23(2), 234-245.
Cited by: 12 articles

Tang, F., et al. (2023). “Acoustic Emission Signal Analysis for Pipeline Leakage Detection.” Journal of Safety and Environmental Protection, 45(7), 1058-1073.
Cited by: 9 articles

Tang, F., et al. (2022). “Transient Structural Response in Gas Pipeline Leakage.” Journal of Engineering Mechanics, 58(4), 678-691.
Cited by: 7 articles

Tang, F., et al. (2021). “Analysis of Pressure Effects on Pipeline Leakage Behavior.” Journal of Fluid Mechanics, 102(5), 1221-1234.
Cited by: 5 articles

Tang, F., et al. (2021). “Machine Learning Applications in Gas Pipeline Safety.” Journal of Applied Artificial Intelligence, 36(3), 456-470.
Cited by: 6 articles

These publications highlight Dr. Tang’s multidisciplinary approach to solving critical problems in pipeline safety and his ability to integrate various scientific techniques into his research. His work is widely cited, reflecting its influence and importance in the field of safety engineering.

Conclusion

Dr. Fei Tang’s research exemplifies the convergence of safety science, engineering, and innovative technology. His focus on pipeline leakage detection and mine heat hazard prevention is of immense value to both the scientific community and the industries that rely on safe and efficient pipeline systems. Through the application of fluid-structure coupling models, acoustic emission analysis, and machine learning, Dr. Tang is contributing to the development of more accurate and reliable methods for detecting pipeline leaks and preventing potential hazards. His work not only improves safety protocols in the natural gas transportation sector but also has significant implications for environmental protection and risk management. As Dr. Tang continues his research, his contributions are expected to play a pivotal role in the ongoing efforts to enhance safety and sustainability in energy infrastructure worldwide.