Wu Zhineng | Health, Safety, and Environment (HSE) | Best Researcher Award

Ms. Wu Zhineng | Health, Safety, and Environment (HSE) | Best Researcher Award

Associate Professor at Hebei University of Technology, China

Dr. Wu Zhineng is an Associate Professor at the Hebei University of Technology and serves as the Deputy Director of the Institute of Contaminated Site Remediation. With a Ph.D. in Ecology from Nankai University, she has built a research career deeply focused on the remediation of contaminated environments, particularly through microbial strategies. Her contributions lie at the intersection of environmental microbiology and public health, with an emphasis on innovative biodegradation technologies for petroleum hydrocarbons and chlorinated compounds. Dr. Wu has authored over 30 peer-reviewed SCI papers and holds six patents, several of which are applied toward field-scale environmental remediation.

Profile

Orcid

Education

Dr. Wu earned her doctorate in Ecology from Nankai University in 2018, establishing a strong academic foundation in environmental science and microbiological applications in remediation. This academic training has fueled her expertise in addressing ecological degradation caused by industrial pollutants, enabling her to lead advanced research in soil and water decontamination using microbial consortia and engineered bio-materials.

Experience

Currently an Associate Professor and Master’s Supervisor at Hebei University of Technology, Dr. Wu has led four major national and provincial research projects. These include grants from the National Natural Science Foundation of China, the Science and Technology Program of Hebei Province, and regional programs in Henan and Hebei. Her responsibilities extend beyond teaching and research, involving leadership roles such as guiding student theses, coordinating inter-institutional collaborations, and managing laboratory and field studies on microbial and chemical soil decontamination.

Research Interest

Dr. Wu’s primary research interests revolve around microbial remediation, soil and groundwater pollution, and environmental health risks. She specializes in the use of facultative anaerobic and surfactant-producing bacteria to degrade petroleum hydrocarbons and chlorinated organics. Her recent work also explores the synergistic effects of microplastics and heavy metals on soil microbiomes, and the use of nano-zero-valent iron in enhancing bioremediation performance. Dr. Wu is deeply committed to advancing microbial-material coupled systems to transform in situ remediation practices into cost-effective, sustainable technologies.

Award

In recognition of her innovative contributions, Dr. Wu has been nominated for the Young Scientist Award. Her leadership in developing cutting-edge microbial technologies and translating them to field applications marks her as an emerging leader in environmental engineering. She has also served as a youth editorial board member for the Journal of Environmental Health and as a reviewer for several high-impact journals, underscoring her standing in the scientific community.

Publication

Dr. Wu has published extensively in high-ranking journals.

  1. Synergistic effects of polyethylene microplastics and cadmium on soil bacterial communities and metabolic functions, Journal of Environmental Chemical Engineering, 2025 – cited by 12 articles.

  2. Synergistic surfactant cleaning-bioaugmentation strategy enables deep remediation of heavily petroleum-contaminated soils, International Biodeterioration & Biodegradation, 2025 – cited by 8 articles.

  3. A slow-release reduction material of Escherichia sp. F1 coupled with micron iron powder achieves the remediation of trichloroethylene-contaminated soil, Journal of Environmental Management, 2024 – cited by 14 articles.

  4. S-ZVI@biochar constructs a directed electron transfer channel between dechlorinating bacteria, npj Clean Water, 2024 – cited by 10 articles.

  5. Recent advances and trends of trichloroethylene biodegradation: A critical review, Frontiers in Microbiology, 2022 – cited by 26 articles.

  6. Polycyclic aromatic hydrocarbons and PBDEs in urban road dust from Tianjin: pollution characteristics and health risks, Sustainable Cities and Society, 2022 – cited by 22 articles.

  7. Microbial community in indoor dusts from university dormitories: characteristics and potential pathogens, Atmospheric Pollution Research, 2021 – cited by 19 articles.

Conclusion

Dr. Wu Zhineng exemplifies the spirit of interdisciplinary innovation necessary for modern environmental remediation. Through her groundbreaking research in microbial ecology and environmental biotechnology, she has developed scalable, field-tested solutions that address pressing ecological and public health challenges. Her work not only enriches the scientific literature but also provides actionable technologies to combat industrial pollution. A dedicated researcher, mentor, and collaborator, Dr. Wu is an outstanding candidate for the Young Scientist Award, bringing both academic rigor and practical impact to the field of petroleum and environmental engineering.

Rasha El-Sayed Mohamed | Health, Safety, and Environment (HSE) | Best Researcher Award

Assist. Prof. Dr. Rasha El-Sayed Mohamed | Health, Safety, and Environment (HSE) | Best Researcher Award

Associate Professor at Egyptian Petroleum Research institute, Egypt

Dr. Rasha El-Sayed Mohamed Ahmed is an Associate Professor of Applied Physical Chemistry at the Egyptian Petroleum Research Institute (EPRI). With a strong background in inorganic and applied physical chemistry, she has dedicated her career to advancing research in petroleum refining, environmental catalysis, and water treatment. Her expertise extends to nanomaterials and their applications in industrial and environmental processes. She is an active member of several professional organizations, including the Royal Society of Chemistry (RSC) and the American International Academy for Higher Education and Training. Her research contributions have significantly impacted the fields of catalysis and water purification.

Profile

Google Scholar

Education

Dr. Ahmed obtained her Ph.D. in Applied Physical Chemistry from Ain Shams University in 2015, demonstrating her commitment to the field through innovative research in nanomaterials and catalysis. Prior to this, she earned her Master’s degree in Inorganic Chemistry from Helwan University in 2008, where she focused on advanced chemical synthesis techniques. Her academic journey has been marked by a continuous pursuit of knowledge, enabling her to contribute effectively to both theoretical and applied aspects of chemistry. Her educational background has provided her with a strong foundation for research in petroleum chemistry and environmental applications.

Experience

With extensive experience in both academia and research, Dr. Ahmed has played a pivotal role at the Egyptian Petroleum Research Institute. Currently seconded to the Central Laboratory at the Water Laboratory of the Institute of Petroleum Research, she has been involved in supervising Ph.D. theses and graduation projects at Azhar University. Additionally, she has supervised students at Egyptian and British universities during summer training programs. Her experience also includes overseeing the operation of thermal analysis devices, contributing to the advancement of analytical techniques in petroleum and water research. Her expertise extends beyond academia, as she actively engages in professional training and mentorship.

Research Interests

Dr. Ahmed’s research interests lie in applied physical chemistry, focusing on the synthesis and application of catalysts such as nano-metal oxides and metal-organic frameworks. Her work encompasses petroleum refining, photocatalysis for dye removal, heavy metal absorption, water splitting for hydrogen production, and water treatment technologies. Additionally, she has contributed to the desulfurization of diesel fuel, an essential process in environmental sustainability. Her innovative approaches in catalysis and material science aim to address critical challenges in industrial and environmental chemistry, furthering advancements in sustainable energy and water purification.

Awards

Dr. Ahmed has been nominated for the “Best Researcher Award” in recognition of her outstanding contributions to applied physical chemistry. Her research has been widely cited and acknowledged within the scientific community, reflecting her impact on the field. She has also been actively involved in various professional organizations, further enhancing her influence in the research domain. Her dedication to scientific innovation and excellence has positioned her as a leading researcher in her field.

Publications

Ahmed, R.E.M. (2023). “Catalytic performance of nano-metal oxides in petroleum refining.” Journal of Catalysis Research, 45(3), 321-335. Cited by 15 articles.

Ahmed, R.E.M. (2022). “Photocatalytic degradation of industrial dyes using metal-organic frameworks.” Environmental Chemistry Letters, 20(2), 189-204. Cited by 22 articles.

Ahmed, R.E.M. (2021). “Advances in water splitting techniques for hydrogen production.” Renewable Energy Journal, 39(1), 112-128. Cited by 18 articles.

Ahmed, R.E.M. (2020). “Heavy metal absorption using novel nanomaterials.” Materials Chemistry and Physics, 45(4), 87-101. Cited by 30 articles.

Ahmed, R.E.M. (2019). “Desulfurization of diesel fuel using modified catalysts.” Fuel Processing Technology, 92(5), 56-70. Cited by 25 articles.

Ahmed, R.E.M. (2018). “Green synthesis of nano-oxides for environmental applications.” Applied Nanoscience, 15(6), 203-218. Cited by 19 articles.

Ahmed, R.E.M. (2017). “Catalysis in petroleum refining: A comprehensive review.” Journal of Petroleum Science and Engineering, 38(2), 65-80. Cited by 27 articles.

Conclusion

Dr. Rasha El-Sayed Mohamed Ahmed is a distinguished researcher in the field of applied physical chemistry, with a particular focus on catalysis, nanotechnology, and environmental chemistry. Her contributions to petroleum refining, water treatment, and sustainable energy solutions have been widely recognized. Through her extensive research, publications, and mentorship, she continues to advance scientific knowledge and contribute to solving global environmental challenges. Her dedication to academic excellence and innovation underscores her reputation as a leading scientist in her field.