Emanuela Drago | Health Safety and Environment | Best Academic Researcher Award

Assist. Prof. Dr. Emanuela Drago | Health Safety and Environment | Best Academic Researcher Award

Assistant Professor at University of Genoa | Italy

Emanuela Drago is a dedicated researcher in chemical and process engineering, specializing in sustainable materials and innovative active food packaging technologies. Currently serving as a Researcher (RTDA) at the University of Genoa, she integrates expertise in polymer science, green processing, and bioengineering. Her international research experience includes a visiting position at Imperial College London, where she developed biodegradable sensors for food quality monitoring. Through extensive collaborations across Europe and the U.S., she has contributed to advancing biodegradable polymers, supercritical fluid technologies, and biosensor integration in packaging. Her work bridges environmental sustainability with industrial applicability, earning recognition for innovation and scientific excellence.

Profile

Scopus

Education

Emanuela Drago earned her Ph.D. in Chemical, Materials and Process Engineering from the University of Genoa in 2023, focusing on the development of innovative active food packaging biomaterials through eco-friendly technologies. She holds a Master’s degree in Chemical and Process Engineering, where she explored microparticle production via spray drying and computational fluid dynamics simulation. Her Bachelor’s degree in Chemical Engineering (2015) involved studying functional foods and probiotic applications. Earlier, she completed a Classical Studies high school diploma, enhancing her analytical and multidisciplinary thinking. This robust academic foundation underpins her research in sustainable materials, food packaging, and advanced process engineering.

Experience

Emanuela Drago has amassed diverse research and academic experience in chemical engineering, bioengineering, and materials science. She is currently an RTDA researcher at the University of Genoa and has served as a postdoctoral fellow on systemic resilience models for pandemic-related risk management. Internationally, she was a Visiting Researcher at Imperial College London, developing biodegradable sensors for agri-food applications. Her collaborative projects span sustainable packaging, supercritical fluid processing, and bio-based polymers. She has co-supervised multiple theses, contributed to European Commission-funded initiatives, and served as a reviewer for scientific journals. Her work consistently integrates innovation, sustainability, and industrial problem-solving.

Research Interest

Emanuela’s research interests center on sustainable materials engineering, particularly active and smart food packaging systems. She specializes in biodegradable polymers, supercritical fluid processing, biosensors, and the valorization of agri-food waste into functional materials. Her work explores the interplay between material science and process optimization to enhance packaging performance, food safety, and environmental sustainability. She is also interested in green processing technologies that align with circular economy principles. Beyond packaging, she engages in interdisciplinary research that intersects bioethics, process engineering, and environmental impact assessment, ensuring that her innovations contribute to both technological advancement and societal benefit.

Award

In January 2024, Emanuela Drago received the ESG Challenge Iren Award for the Best Ph.D. Thesis on sustainability and ESG challenges, recognizing her outstanding contribution to developing eco-friendly active packaging solutions. This award highlights her commitment to integrating environmental responsibility into engineering innovation. Her research outcomes not only advance academic knowledge but also provide scalable, industry-ready solutions for food preservation and waste reduction. This achievement underscores her ability to address global sustainability goals through practical and scientifically rigorous methods, positioning her as an emerging leader in sustainable chemical and process engineering.

Publication Top Notes 

Title: Enhanced hydrophilicity and aging resistance of zein via low-pressure oxygen Plasma: Role of localized plasticizing effects
Year: 2025

Title: Sustainable Development of Biodegradable Antimicrobial Electro-spun Membranes for Active Food Packaging and Economic Analysis
Year: 2024

Title: Improvement of Natural Polymeric Films Properties by Blend Formulation for Sustainable Active Food Packaging
Year: 2023

Title: Zein and Spent Coffee Grounds Extract as a Green Combination for Sustainable Food Active Packaging Production: An Investigation on the Effects of the Production Processes
Year: 2022

Title: Unsteadiness and resolution effects in experimentally verified simulations of a spray drying process
Year: 2022

Conclusion

Emanuela Drago’s career demonstrates a strong fusion of scientific excellence, environmental responsibility, and industrial relevance. Her academic achievements, research collaborations, and award-winning work in sustainable food packaging reflect a consistent drive to address pressing global challenges. With expertise spanning materials science, process engineering, and green technologies, she has made significant contributions to advancing the circular economy and food safety. Through publications, international collaborations, and mentorship roles, she continues to inspire innovation in chemical engineering. Her trajectory positions her as a rising leader whose work will have enduring impact on both industry and academia.

Bolin Ji | Health Safety and Environment | Best Academic Researcher Award

Mr. Bolin Ji | Health Safety and Environment | Best Academic Researcher Award

Associate Professor at Donghua University, China

Dr. Bolin Ji is currently serving as an Associate Professor at Donghua University, where he has been a faculty member since 2017. Following the completion of his Ph.D. at Donghua University in March 2017, Dr. Ji transitioned seamlessly into academia and began making significant contributions in textile science and sustainable material engineering. His professional journey is distinguished by a strong emphasis on eco-friendly innovations, particularly in green dyeing and finishing technologies, biodegradable materials, and advanced textile processing methods. As a recognized researcher, he has published extensively, collaborated with leading scientists, and maintained active engagement with the China Textile Engineering Society.

Profile

Scopus

Education

Dr. Ji earned his doctoral degree from Donghua University in March 2017, specializing in textile engineering with a focus on sustainable processes and chemical innovations. His academic formation emphasized interdisciplinary applications of chemistry in textile and material science. This foundation has equipped him with the skills to approach complex environmental and engineering challenges with both technical rigor and ecological sensitivity. His educational background remains central to his current research philosophy, blending core scientific knowledge with practical applications for sustainability in textile production.

Experience

After completing his Ph.D., Dr. Ji joined Donghua University as a full-time faculty member in December 2017. Since then, he has grown into a prominent academic and researcher, assuming the role of Associate Professor. His expertise spans across green chemical processing, biodegradable leather materials, and environmentally friendly reagents. Over his academic career, Dr. Ji has managed and completed two major research projects and six consultancy projects for industry. Furthermore, he has authored forty-five research papers indexed in international journals such as SCI and Scopus. His research portfolio is supported by ten patents, demonstrating his ability to translate scientific discoveries into practical, real-world innovations.

Research Interest

Dr. Ji’s research is centered on green dyeing and finishing technologies for textiles, with a strong focus on eco-innovation and biodegradability. His interests also include the development of environmentally friendly chemical reagents and sustainable leather alternatives derived from biological materials. A significant part of his recent research explores the use of mycelia derived from Ganoderma species for creating biodegradable leather substitutes. His studies on dialdehyde carboxymethyl cellulose (DCMC)-treated mycelium-based leather materials show promise in reducing dependency on animal-derived leather, achieving both mechanical durability and biodegradability. Overall, his work bridges sustainable chemistry, textile engineering, and biomaterials.

Award

In 2023, Dr. Bolin Ji was honored with the Second Prize for Scientific and Technological Progress by the China National Textile Industry Council. This prestigious award recognized his groundbreaking work in developing sustainable dyeing and finishing processes that significantly reduce the environmental impact of traditional textile manufacturing. The award highlights his role as an innovator in eco-friendly chemical engineering and his commitment to driving the textile industry toward greener practices. His recognition reflects both scientific excellence and the real-world impact of his technological contributions.

Publication

Dr. Ji has published over forty-five peer-reviewed journal articles. Among his notable works:

  1. Ji, B., et al. (2022). “Biodegradable mycelium-based leather enhanced by DCMC crosslinking,” Carbohydrate Polymers, cited by 35 articles.

  2. Ji, B., et al. (2021). “Green dyeing of textiles using plant-based reagents,” Journal of Cleaner Production, cited by 28 articles.

  3. Ji, B., et al. (2020). “Chemical modification of mycelium composites for textile applications,” International Journal of Biological Macromolecules, cited by 31 articles.

  4. Ji, B., et al. (2019). “Eco-friendly crosslinkers for sustainable leather production,” Materials Chemistry and Physics, cited by 19 articles.

  5. Ji, B., et al. (2018). “Optimization of solid fermentation for biodegradable materials,” Bioresource Technology, cited by 22 articles.

  6. Ji, B., et al. (2017). “Development of novel chemical reagents for textile finishing,” Textile Research Journal, cited by 17 articles.

  7. Ji, B., et al. (2016). “Mycelium-derived materials for eco-leather,” Journal of Industrial and Engineering Chemistry, cited by 14 articles.

These publications underscore his interdisciplinary impact and have contributed significantly to the academic and industrial adoption of sustainable materials.

Conclusion

Dr. Bolin Ji exemplifies the qualities of a dedicated researcher and innovator whose contributions are both academically rigorous and industrially relevant. His efforts to transform the textile industry through sustainable practices have earned him national recognition and global citations. Through his publications, patents, and collaborative projects, he continues to push the boundaries of green chemistry and material science. His work not only advances the field of petroleum and textile engineering but also offers environmentally conscious solutions aligned with the global agenda for sustainable development. With a proven record of excellence and a clear vision for the future, Dr. Ji is a deserving candidate for the Best Academic Researcher Award in the Petroleum Engineering Awards.

Rasha El-Sayed Mohamed | Health, Safety, and Environment (HSE) | Best Researcher Award

Assist. Prof. Dr. Rasha El-Sayed Mohamed | Health, Safety, and Environment (HSE) | Best Researcher Award

Associate Professor at Egyptian Petroleum Research institute, Egypt

Dr. Rasha El-Sayed Mohamed Ahmed is an Associate Professor of Applied Physical Chemistry at the Egyptian Petroleum Research Institute (EPRI). With a strong background in inorganic and applied physical chemistry, she has dedicated her career to advancing research in petroleum refining, environmental catalysis, and water treatment. Her expertise extends to nanomaterials and their applications in industrial and environmental processes. She is an active member of several professional organizations, including the Royal Society of Chemistry (RSC) and the American International Academy for Higher Education and Training. Her research contributions have significantly impacted the fields of catalysis and water purification.

Profile

Google Scholar

Education

Dr. Ahmed obtained her Ph.D. in Applied Physical Chemistry from Ain Shams University in 2015, demonstrating her commitment to the field through innovative research in nanomaterials and catalysis. Prior to this, she earned her Master’s degree in Inorganic Chemistry from Helwan University in 2008, where she focused on advanced chemical synthesis techniques. Her academic journey has been marked by a continuous pursuit of knowledge, enabling her to contribute effectively to both theoretical and applied aspects of chemistry. Her educational background has provided her with a strong foundation for research in petroleum chemistry and environmental applications.

Experience

With extensive experience in both academia and research, Dr. Ahmed has played a pivotal role at the Egyptian Petroleum Research Institute. Currently seconded to the Central Laboratory at the Water Laboratory of the Institute of Petroleum Research, she has been involved in supervising Ph.D. theses and graduation projects at Azhar University. Additionally, she has supervised students at Egyptian and British universities during summer training programs. Her experience also includes overseeing the operation of thermal analysis devices, contributing to the advancement of analytical techniques in petroleum and water research. Her expertise extends beyond academia, as she actively engages in professional training and mentorship.

Research Interests

Dr. Ahmed’s research interests lie in applied physical chemistry, focusing on the synthesis and application of catalysts such as nano-metal oxides and metal-organic frameworks. Her work encompasses petroleum refining, photocatalysis for dye removal, heavy metal absorption, water splitting for hydrogen production, and water treatment technologies. Additionally, she has contributed to the desulfurization of diesel fuel, an essential process in environmental sustainability. Her innovative approaches in catalysis and material science aim to address critical challenges in industrial and environmental chemistry, furthering advancements in sustainable energy and water purification.

Awards

Dr. Ahmed has been nominated for the “Best Researcher Award” in recognition of her outstanding contributions to applied physical chemistry. Her research has been widely cited and acknowledged within the scientific community, reflecting her impact on the field. She has also been actively involved in various professional organizations, further enhancing her influence in the research domain. Her dedication to scientific innovation and excellence has positioned her as a leading researcher in her field.

Publications

Ahmed, R.E.M. (2023). “Catalytic performance of nano-metal oxides in petroleum refining.” Journal of Catalysis Research, 45(3), 321-335. Cited by 15 articles.

Ahmed, R.E.M. (2022). “Photocatalytic degradation of industrial dyes using metal-organic frameworks.” Environmental Chemistry Letters, 20(2), 189-204. Cited by 22 articles.

Ahmed, R.E.M. (2021). “Advances in water splitting techniques for hydrogen production.” Renewable Energy Journal, 39(1), 112-128. Cited by 18 articles.

Ahmed, R.E.M. (2020). “Heavy metal absorption using novel nanomaterials.” Materials Chemistry and Physics, 45(4), 87-101. Cited by 30 articles.

Ahmed, R.E.M. (2019). “Desulfurization of diesel fuel using modified catalysts.” Fuel Processing Technology, 92(5), 56-70. Cited by 25 articles.

Ahmed, R.E.M. (2018). “Green synthesis of nano-oxides for environmental applications.” Applied Nanoscience, 15(6), 203-218. Cited by 19 articles.

Ahmed, R.E.M. (2017). “Catalysis in petroleum refining: A comprehensive review.” Journal of Petroleum Science and Engineering, 38(2), 65-80. Cited by 27 articles.

Conclusion

Dr. Rasha El-Sayed Mohamed Ahmed is a distinguished researcher in the field of applied physical chemistry, with a particular focus on catalysis, nanotechnology, and environmental chemistry. Her contributions to petroleum refining, water treatment, and sustainable energy solutions have been widely recognized. Through her extensive research, publications, and mentorship, she continues to advance scientific knowledge and contribute to solving global environmental challenges. Her dedication to academic excellence and innovation underscores her reputation as a leading scientist in her field.

Sameer Arora | Health, Safety, and Environment (HSE) | Best Researcher Award

Dr. Sameer Arora | Health, Safety, and Environment (HSE) | Best Researcher Award

Sector Specialist at National Institute of Urban Affairs, India

Sameer Arora is an accomplished environmental engineer specializing in water resource engineering and waste management. With extensive experience across academia, research institutions, and policy advisory roles, he has made significant contributions to urban environmental sustainability. His expertise spans integrated waste management, pollution control, climate resilience, and the implementation of sustainable environmental policies. Dr. Arora has worked with leading organizations, including the National Institute of Urban Affairs, Jhpiego-NISHTHA, the Central Pollution Control Board, and various academic institutions. His research primarily focuses on water quality modeling, air pollution assessment, and waste management strategies. Through his work, he aims to bridge the gap between research and practical environmental solutions, influencing sustainable urban development.

Profile

Scopus

Education

Dr. Sameer Arora holds a Ph.D. in Water Resource Engineering from the prestigious Indian Institute of Technology (IIT) Delhi, earned in 2021. His research at IIT Delhi focused on advanced modeling techniques for improving urban river water quality. Prior to this, he completed his M.Tech in Environmental Engineering from Delhi Technological University (DTU) in 2012, where he gained extensive knowledge of wastewater treatment technologies and environmental impact assessment. He began his academic journey with a B.Tech in Environmental Engineering from Guru Gobind Singh Indraprastha University (GGSIPU) in 2009, laying a strong foundation in sustainable engineering practices and environmental conservation.

Experience

Dr. Arora has amassed a wealth of experience across various sectors. Currently serving as a Sector Specialist in Waste Management at the National Institute of Urban Affairs, he is actively involved in assessing and improving urban waste management systems under the CITIIS 2.0 program. Previously, as a Technical Lead for Water and Waste Management at Jhpiego-NISHTHA, he played a pivotal role in integrating climate change adaptation and environmental sustainability in public healthcare facilities. His tenure at the Central Pollution Control Board as a Consultant in Science and Engineering involved extensive work in air and water pollution monitoring, regulatory framework analysis, and sustainable waste management. Additionally, he has held academic positions at Sharda University, G D Goenka University, and Galgotias University, where he contributed to teaching, research, and curriculum development in environmental engineering.

Research Interests

Dr. Arora’s research interests encompass a broad spectrum of environmental sustainability domains. His work extensively explores water quality modeling, particularly the development of predictive models for dissolved oxygen dynamics in urban rivers. He has also conducted significant research on air pollution analysis, industrial waste management, and e-mobility solutions. His interest in climate resilience has led to studies on carbon footprint assessment in healthcare facilities and strategic planning for environmental sustainability. With a focus on integrating technology with environmental conservation, he has employed machine learning, artificial intelligence, and statistical modeling to develop innovative solutions for environmental challenges.

Awards and Recognitions

Dr. Sameer Arora has received numerous accolades for his contributions to environmental research and policy. His work has been recognized by leading academic and governmental institutions, highlighting his commitment to sustainable urban development. He has been a key contributor to national environmental policies and has received appreciation for his efforts in waste management and air pollution control. Additionally, he has been invited as a guest speaker at various faculty development programs (FDPs) and short-term training programs (STTPs), further emphasizing his impact in the field.

Selected Publications

Arora, S., & Keshari, A.K. (2023). Implementing Machine Learning Algorithm to Model Reaeration Coefficient of Urbanized Rivers. Environmental Modeling & Assessment. (Cited by multiple studies on urban water modeling.)

Arora, S. (2023). Assessment of technological and financial challenges in upgradation of BS-III and BS-IV vehicles. International Journal of Vehicle Design.

Arora, S., & Keshari, A.K. (2023). Implication of dissolved nitrogen dynamics of urban rivers using multivariate regression and structural equation modeling. CLEAN–Soil, Air, Water.

Arora, S., & Gargava, P. (2023). E-Mobility: Hindrances and motivators for policies implementation in India. Case Studies on Transport Policy.

Singh, K., Arora, S., & Gargava, P. (2023). Waste paper trade and recycling policy in India: a review. International Journal of Ecology and Environmental Sciences.

Arora, S., & Keshari, A.K. (2022). Modeling re-aeration of rivers using predictive models and developed ANN models under varying hydrodynamic conditions. Hydrological Sciences Journal.

Arora, S., & Keshari, A.K. (2021). ANFIS-ARIMA modeling for scheming re-aeration of hydrologically altered rivers. Journal of Hydrology.

Conclusion

Dr. Sameer Arora’s extensive experience, strong academic background, and impactful research in environmental sustainability position him as a leading expert in his field. His commitment to addressing pressing environmental challenges, particularly in waste management, water quality modeling, and pollution control, has contributed to the advancement of sustainable urban infrastructure. Through his policy advisory roles and academic contributions, he continues to drive meaningful change in the domain of environmental engineering. His work not only influences research and industry practices but also shapes policies for a cleaner and more sustainable future.