Shuangmei Zou | Reservoir Fluid Flow | Best Researcher Award

Assoc. Prof. Dr. Shuangmei Zou | Reservoir Fluid Flow | Best Researcher Award

Associate Professor at China University of Geosciences, China

Dr. Shuangmei Zou is an Associate Professor at the School of Earth Resources, China University of Geosciences. With over a decade of academic and professional experience, she specializes in porous media characterization and subsurface flow processes critical to energy transition technologies. Her research bridges experimental and computational techniques to explore fluid dynamics in geological formations. Dr. Zou is a respected scholar with numerous publications in leading journals and editorial responsibilities. She actively contributes to global scientific communities through professional memberships and international collaborations. Her interdisciplinary expertise and commitment to applied geoscience have made significant contributions to energy resource optimization.

👤 Profile

Orcid

🏫 Education

Dr. Zou completed her Ph.D. in Petroleum Engineering at the University of New South Wales (UNSW), Australia, in 2018. Her doctoral research, under the supervision of Professors Ryan T. Armstrong, Christoph Arns, and Furqan Hussain, focused on multiphase flow and pore-scale phenomena in porous media. She previously earned a Master’s degree in Oil and Gas Field Engineering (2012) and a Bachelor’s degree in Petroleum Engineering (2009), both from China University of Geosciences. Her academic foundation combines rigorous engineering and geoscience training, equipping her with a solid theoretical background and practical problem-solving skills relevant to energy systems and reservoir engineering.

💼 Experience

Dr. Zou currently serves as an Associate Professor at the China University of Geosciences, a role she has held since March 2022. She began her academic career at the same institution as a Lecturer in 2019. Before transitioning to academia, she worked as an Assistant Reservoir Engineer for the China National Offshore Oil Corporation (CNOOC), where she applied reservoir simulation and engineering techniques in field development. Her career trajectory reflects a blend of industry knowledge and academic rigor, enabling her to mentor students and lead research on subsurface fluid transport, underground energy storage, and pore-scale material modeling.

🔬 Research Interest

Dr. Zou’s research spans digital materials characterization, porous media imaging, and modeling of multiphase flow. She investigates the physical principles governing fluid displacement in geological systems using advanced X-ray micro-computed tomography and pore-scale imaging. Her work supports innovations in underground energy storage, enhanced oil recovery, and carbon capture technologies. She has pioneered methods for analyzing wettability effects and interfacial dynamics in mixed-wet and water-wet conditions. Her interdisciplinary approach integrates petroleum engineering, geophysics, and computational modeling, contributing to the scientific understanding and practical advancement of future energy technologies under complex subsurface conditions.

🏅 Award

Dr. Zou’s academic excellence has been recognized with several prestigious awards. She received a Ph.D. Research Stipend and Full Tuition Fee Scholarship from UNSW between 2013 and 2017. In 2016, she was awarded the Postgraduate Research Student Support (PRSS) Conference Travel Grant by the UNSW Graduate Research School, which supported her participation in international conferences. Earlier in her academic journey, she earned the National Endeavor Scholarship from China University of Geosciences in 2008. These honors reflect her sustained academic performance and recognition by both domestic and international institutions for her potential and contributions to research.

📚 Publication

Dr. Zou has authored numerous influential publications, including the following selected works:

  1. Kang N, Zou S, et al. (2025). “Insights into Interfacial Dynamic and Displacement Patterns…” Journal of Geophysical Research: Solid Earth (Accepted).

  2. Cai J, Qin X, Wang H, Xia Y, Zou S. (2024). “Pore-scale investigation of forced imbibition…” Journal of Rock Mechanics and Geotechnical Engineering, Cited by 6.

  3. Zou S, Zhang Y, Ma L. (2024). “Imaging techniques for optimizing underground energy storage.” Advances in Geo-Energy Research, Cited by 10.

  4. Zou S, et al. (2024). “Energy signature in multiphase flow regimes.” Water Resources Research, 60(3), Cited by 14.

  5. Zou S, et al. (2022). “Characterization of Two-Phase Flow…” Energies, 15(6):2036, Cited by 18.

  6. Zou S, Liu Y, Cai J, et al. (2020). “Influence of capillarity on relative permeability.” Water Resources Research, 56(11), Cited by 21.

  7. Zou S, Sun C. (2020). “X-ray imaging of wettability in porous media: A review.” Capillarity, 3(3), Cited by 25.

These publications reflect her contributions to the fields of geophysics, fluid mechanics, and porous media research.

🧾 Conclusion

Dr. Shuangmei Zou is a distinguished researcher whose work has significantly advanced the understanding of multiphase flow in porous media. Her publications and leadership roles in editorial boards demonstrate her influence in the scientific community. She bridges the gap between theoretical modeling and practical application, enabling technological advancements in underground energy storage and enhanced oil recovery. Her research has both academic value and real-world impact, addressing critical challenges in the energy sector. Through innovative experimentation, high-impact scholarship, and international collaboration, Dr. Zou exemplifies the qualities of a leading scientist deserving of recognition and further opportunities for advancement.

Tahir Cetin Akinci | Data Analytics in Upstream Operations | Best Research Article Award

Dr. Tahir Cetin Akinci | Data Analytics in Upstream Operations | Best Research Article Award

Scientist at University of California Riverside, United States

Dr. Tahir Çetin Akıncı is a distinguished academician and researcher in electrical engineering, particularly known for his impactful work in artificial intelligence, renewable energy, and advanced signal processing. With a professional trajectory that spans over two decades, he has consistently contributed to advancing knowledge and innovation in intelligent systems and power electronics. His commitment to both academic excellence and real-world problem-solving has earned him global recognition, positioning him as a thought leader in his field.

Profile

Orcid

Education

Dr. Akıncı began his academic journey at Klaipeda University in Lithuania, earning his undergraduate degree in electrical engineering in 2000. He later pursued graduate studies at Marmara University, where he completed his master’s degree in 2005 and Ph.D. in 2010. These formative academic experiences laid the groundwork for his future research directions, particularly in the domains of energy systems and machine learning applications. His educational path is marked by a solid foundation in electrical systems theory, enriched by practical insights into data-driven methodologies.

Experience

His professional career commenced as a Research Assistant at Marmara University, where he served from 2003 to 2010. He then joined Istanbul Technical University (ITU), advancing through academic ranks to become a full professor by 2020. Currently, Dr. Akıncı serves at the University of California, Riverside, contributing to international collaborations and high-impact research initiatives. Throughout his tenure in academia, he has mentored students, led research projects, and collaborated across disciplines to address critical engineering challenges.

Research Interest

Dr. Akıncı’s research interests are both broad and deep, encompassing renewable energy systems, artificial neural networks, deep learning, machine learning, cognitive systems, signal processing, and data analysis. His multidisciplinary approach allows him to tackle complex problems—ranging from optimizing photovoltaic systems to diagnosing electrical motor faults using AI. His work in renewable energy technologies and smart systems not only enhances system efficiencies but also aligns with global sustainability goals. He is particularly passionate about the integration of AI in diagnostics, predictive maintenance, and energy management, striving to create systems that are not only intelligent but also resilient and sustainable.

Award

His contributions have been recognized through multiple prestigious awards, most notably the International Young Scientist Excellence Award and the Best Researcher Award in 2022. These accolades reflect his pioneering work and the high regard he holds within the scientific community. In addition to these honors, Dr. Akıncı has played critical roles as editor and guest editor for leading journals and serves on scientific committees of several high-profile international conferences, further underscoring his influence in shaping future directions in electrical engineering and AI.

Publication

Among his extensive list of publications, several recent papers stand out for their innovative approaches and significant citations. For instance:

“Sustainable pathways for hydrogen production: Metrics, trends, and strategies for a zero-carbon future,” Sustainable Energy Technologies and Assessments, 2025 – cited for its strategic insights on green hydrogen.

“Revealing GLCM Metric Variations across Plant Disease Dataset,” Electronics, 2024 – contributes to deep learning applications in agriculture.

“Optimization of Neuro-controller Application for MPPT in Photovoltaic Systems,” Electric Power Components and Systems, 2024 – enhances energy efficiency using AI.

“Time Series Forecasting Utilizing AutoML,” Information, 2024 – applies automated ML for forecasting in diverse datasets.

“Advanced Dual RNN Architecture for Electrical Motor Fault Classification,” IEEE Access, 2023 – highly cited for its innovation in motor diagnostics.

“Machine Learning-Based Error Correction Codes and Communication Protocols for Power Line Communication,” IEEE Access, 2023 – strengthens smart grid reliability.

“Effect of LED Light Frequency on an Object in Terms of Visual Comfort,” Electric Power Components and Systems, 2024 – explores visual ergonomics in energy-efficient lighting.

Conclusion

In conclusion, Dr. Tahir Çetin Akıncı exemplifies the ideal candidate for this award through his unwavering commitment to scientific advancement, innovation in engineering education, and leadership in multidisciplinary research. His work bridges the gap between theory and application, aiming to develop technologies that not only solve current engineering problems but also anticipate future challenges. Through his dedication, he continues to inspire the next generation of engineers and scientists, fostering a more intelligent and sustainable world.

Bawoke Mekuye Getnet | Petroleum Engineering | Best Researcher Award

Mr. Bawoke Mekuye Getnet | Petroleum Engineering | Best Researcher Award

Researcher and Lecturer at Mekdela Amba University, Ethiopia

Bawoke Mekuye Getnet is a dedicated physicist and academic with substantial experience in both secondary and higher education, coupled with a growing research profile in nanomaterials and computational condensed matter physics. His academic journey has been defined by a deep commitment to enhancing scientific understanding and innovation in Ethiopia. As a lecturer and coordinator at Mekdela Amba University, he plays a pivotal role in shaping the academic and research landscape of the institution. His work, marked by both theoretical and computational depth, has contributed meaningfully to the study of optical properties and magnetic behavior in nanomaterials and semiconductors.

Profile

Orcid

Education

Bawoke Mekuye began his academic journey in physics at Dilla University, where he earned his Bachelor of Science in 2013. Following his passion for deeper scientific inquiry, he pursued a Master of Science degree at Debre Markos University, completing it in 2019 with a focus on applied and theoretical physics. His academic background has provided him with a strong foundation in computational modeling and materials science, which he has skillfully applied in both research and teaching.

Experience

Starting his career as a physics teacher at Debre Work Secondary and Preparatory School in 2013, Bawoke Mekuye developed a strong grounding in pedagogy and science communication. In 2020, he transitioned into higher education as a lecturer at Mekdela Amba University, where he currently teaches undergraduate and postgraduate students. Since 2023, he has also served as the Coordinator for Undergraduate, Postgraduate, and Continuing Education Programs in the College of Natural and Computational Sciences. In this role, he has been instrumental in curriculum development and academic program management. His experience extends to teacher training and professional development, having conducted multiple training sessions for educators and students.

Research Interest

Bawoke Mekuye’s research interests lie at the intersection of nanotechnology, materials science, and condensed matter physics. He focuses primarily on the optical and magnetic properties of nanomaterials, with specific attention to the effects of size, doping, and external fields on semiconductor behavior. His theoretical and computational investigations explore advanced materials such as diluted magnetic semiconductors, silver and gold nanoparticles, and emerging energy-related nanostructures. Through his work, he aims to contribute to advancements in high-performance materials for electronics, photonics, and energy storage systems.

Awards and Recognition

Throughout his academic and professional career, Bawoke Mekuye has received recognition for his commitment to science and education. He was honored by Mekdela Amba University for his seminar presentation on nanomaterials, where he effectively communicated complex concepts regarding synthesis, classification, and application of nanostructures. Additionally, he has been active as a reviewer for renowned scientific journals including those published by IOP, Elsevier, and Springer Nature, further reflecting his growing standing in the scientific community.

Publications

Bawoke Mekuye has authored and co-authored multiple peer-reviewed publications in prominent journals, reflecting his expertise in computational physics and nanomaterials. Among his most cited works are:

Mekuye B, Abera B. “Nanomaterials: An overview of synthesis, classification, characterization, and applications.” Nano Select, 2023.

Mekuye B. “The Impact of Size on the Optical Properties of Silver Nanoparticles Based on Dielectric Function.” IntechOpen, 2023.

Mekuye B, Höfer R, Mebratie G. “Computational Study of the Effect of the Size-Dependent Dielectric Functions of Gold Nanomaterials on Optical Properties.” Advances in Condensed Matter Physics, 2024.

Mekuye B, Atnafu D, et al. “Computational investigation of high Curie temperature in iron‐doped GaSb.” Nano Select, 2024.

Mekuye B, Zerihun G. “Theoretical study on the effects of Mn ion doping and magnetic field in (In, Mn)As.” Results in Physics, 2024.

Mekuye B, Höfer R, Abera B. “Nanomaterials: Terms, Definition and Classification.” Elsevier, 2024.

Mekuye B, Mebratie G, et al. “Energy: An Overview of Type, Form, Storage, Advantages, Efficiency, and Their Impact.” Energy Science & Engineering, 2024.

These publications have collectively gained citations from numerous researchers exploring nanostructured materials, semiconductor physics, and applied energy systems.

Conclusion

Bawoke Mekuye Getnet stands out as a rising academic whose contributions span both education and scientific research. His dedication to teaching, mentoring, and academic coordination complements his research excellence in the field of nanomaterials and theoretical physics. With his active engagement in scholarly communication, peer review, and training initiatives, he continues to foster scientific innovation and educational excellence in Ethiopia and beyond. His career trajectory reflects not only a deep passion for physics but also a forward-looking vision for the transformative role of science in society.