Ida Lykke Fabricius | Petrophysics and Rock Physics | Best Researcher Award

Prof. Dr. Ida Lykke Fabricius | Petrophysics and Rock Physics | Best Researcher Award

Professor Emerita at Technical University of Denmark, Denmark

Ida Lykke Fabricius is a distinguished geoscientist whose career spans over four decades of impactful contributions to sedimentary rock physics and geotechnical engineering. Currently Professor Emerita at DTU Sustain, she has played a central role in bridging the gap between academic research and applied geoscience, particularly within the domains of sediment mechanics, rock physics, and reservoir characterization. Her legacy is reflected not only in her extensive publication record but also in her leadership within Danish and Scandinavian scientific institutions. Fabricius has continuously advanced the understanding of how sedimentary rock properties evolve under geological processes, guiding the development of energy, environmental, and civil infrastructure projects.

Profile

Orcid

Education

Fabricius’s academic journey began with an MSc in Geology from the University of Copenhagen in 1981, where she was awarded the prestigious Gold Medal. She went on to earn her PhD in 1988 at the Institute of Applied Geology at the Technical University of Denmark (DTU), focusing on the physical behavior of geological materials. Her academic pursuit culminated in a Dr. techn. degree in 2009 from DTU’s Department of Environmental Engineering, affirming her status as a leading authority in her field. Her progressive academic training reflects a continuous and deepening specialization in geotechnical and geological engineering.

Experience

With a career marked by steady advancement and scientific leadership, Fabricius began as a Development Geologist at Mærsk Oil and Gas (1981–1985) before transitioning to academia. From 1985 to 1988, she served as an Assistant Professor/PhD student at DTU, moving into an Associate Professor role until 2011. She took on early leadership as Head of Department in Geology and Geotechnical Engineering from 1989 to 1992, and later held the positions of Professor MSO (2011–2016), Head of Section (2012–2022), and Professor (2016–2024) at the Department of Civil Engineering, DTU. Internationally, she also contributed as Professor II at the University of Stavanger (2014–2018). Her transition to Professor Emerita in 2024 marks a continuing commitment to mentoring and scientific dialogue.

Research Interest

Fabricius’s research centers on the physical properties of sediments and sedimentary rocks, particularly in relation to pore fluid composition, pressure, temperature, and diagenesis. Her work integrates laboratory measurements with field data, enabling robust models for mechanical behavior and acoustic properties of sedimentary formations. She has contributed significantly to linking rock physics and rock mechanics, with applications ranging from hydrocarbon exploration to sustainable subsurface infrastructure. Her interdisciplinary approach has helped to unify geotechnical engineering, geophysics, and petrophysics into actionable scientific frameworks.

Award

Throughout her career, Fabricius has received notable honors that underscore her technical leadership and service. In 2023, she received the SPE Copenhagen Award for Outstanding Technical & Academic Contributions, a recognition of her influence in petroleum geoscience. She was knighted as “Ridder af Dannebrogsordenen” in 2019, reflecting national recognition of her contributions to science. Earlier distinctions include the Direktør Gorm-Petersens Mindelegat in 1989 and the University of Copenhagen Gold Medal in 1981. These awards affirm both her early promise and long-standing excellence.

Publication

Fabricius has authored over 98 Web of Science-indexed articles with 2,730 citations and an h-index of 30, reflecting her sustained influence in geoscience. Some notable publications include:

  1. Fabricius, I. L. (2003). “How burial diagenesis affects chalk porosity.” AAPG Bulletin, cited by 289 articles.

  2. Fabricius, I. L., et al. (2007). “Petrophysical properties of chalk: pore structure and acoustic velocity.” Petroleum Geoscience, cited by 174 articles.

  3. Fabricius, I. L., & Baechle, G. (2009). “Elastic moduli of chalk and pore system properties.” Geophysics, cited by 141 articles.

  4. Fabricius, I. L., et al. (2008). “Effect of temperature and salinity on acoustic velocity in chalk.” Geophysical Prospecting, cited by 97 articles.

  5. Fabricius, I. L. (2006). “Pore pressure prediction from acoustic data.” Marine and Petroleum Geology, cited by 85 articles.

  6. Fabricius, I. L., & Røgen, B. (2001). “Strength and porosity of chalk from the North Sea.” Journal of Petroleum Science and Engineering, cited by 76 articles.

  7. Fabricius, I. L., et al. (2010). “Velocity–porosity transforms in chalk.” Geophysical Journal International, cited by 69 articles.

These selected publications highlight her integrative and data-driven approach to understanding chalk and sedimentary systems.

Conclusion

Professor Ida Lykke Fabricius has established herself as a cornerstone of geoscientific advancement in Denmark and beyond. Her pioneering research in sedimentary rock physics has shaped both theoretical understanding and practical applications in petroleum engineering, geotechnics, and environmental geoscience. Her leadership roles, high-impact publications, and national honors reflect a lifetime of dedication to scientific integrity, innovation, and education. Fabricius remains a role model for emerging geoscientists, combining rigorous analysis with a collaborative and visionary approach to earth sciences.

Dahai Wang | Petroleum Geology | Best Researcher Award

Dr. Dahai Wang | Petroleum Geology | Best Researcher Award

Researcher at Sinopec Petroleum Exploration and Production Research Institute, China

Dahai Wang is a distinguished researcher at the Sinopec Petroleum Exploration and Production Research Institute with over 15 years of expertise in unconventional petroleum geology. His work has significantly advanced the understanding and development of fine-grained sedimentary reservoirs, particularly in tight sandstone gas, deep carbonate formations, and shale oil/gas systems. As a leading contributor to the field, he integrates reservoir characterization, fluid dynamics, and hydraulic fracturing optimization to enhance hydrocarbon recovery in low-permeability geological settings. His innovations have not only contributed to scientific knowledge but also improved operational performance across various national-scale energy projects, positioning him as a vital contributor to China’s energy security and sustainable development.

Profile

Orcid

Education

Dahai Wang’s educational background is rooted in geosciences with a specialization in petroleum engineering and sedimentary geology. His formal training and subsequent professional development have laid a strong academic foundation, enabling his transition from theoretical research to practical applications. His education emphasized the coupling of geological modeling with engineering techniques, equipping him with the multidisciplinary insights necessary for handling the complexity of unconventional reservoirs.

Experience

Over the course of his career, Dahai Wang has amassed rich and varied professional experience. He has led and participated in seven major research projects, including the influential “Ordos Basin Large Low-Permeability Lithologic Reservoir Demonstration Project.” In this initiative, he spearheaded the development of an integrated reservoir prediction and fracturing optimization system that increased reservoir prediction accuracy by 20%, boosted single-well productivity by 15%, and contributed to a 10% rise in the annual output at the Changqing Oilfield. His track record extends to 18 consultancy and industry projects, demonstrating his strong engagement with real-world applications. His collaborative work with industry partners ensures his research outputs are scalable, impactful, and practically viable.

Research Interest

Wang’s primary research interests revolve around unconventional oil and gas geology, particularly focusing on low-permeability and subsalt reservoirs. He has made significant contributions to reservoir prediction, hydraulic fracturing techniques, and helium enrichment mechanisms. One of his most innovative achievements is the proposal of a “bauxite layer-controlled” helium enrichment model, which led to China’s first discovery of a bauxite-hosted helium reservoir. Furthermore, his advances in subsalt reservoir evaluation helped identify three large subsalt targets, each with over 500 BCM of gas resources, and facilitated the optimization of ten high-yield zones in the southern Ordos Basin. These efforts have directly contributed to reducing exploration risk by 30%.

Award

Dahai Wang’s contributions to the field have earned him numerous recognitions, including editorial appointments and professional memberships, such as with the Society of Petrophysicists and Well Log Analysts (SPWLA). His technical leadership in national projects and innovative methodologies have positioned him as a top contender for the Best Researcher Award. His patents—ten published or under process—highlight the novelty and application of his research outcomes. Additionally, his leadership and achievements in industry-collaborated projects underscore his alignment with the goals of sustainable resource development and national energy priorities.

Publications

Wang’s scholarly impact is reflected in his peer-reviewed publications and citation metrics. He has authored seven key journal publications in reputed scientific outlets. Notable works include:

  1. “Hydraulic Fracturing Optimization in Tight Gas Reservoirs,” Journal of Petroleum Science and Engineering, 2017, cited by 56 articles;

  2. “Characterization of Deep Carbonate Rocks in the Ordos Basin,” Marine and Petroleum Geology, 2018, cited by 42 articles;

  3. “Helium Enrichment and Bauxite Layer Control Mechanisms,” Journal of Natural Gas Science and Engineering, 2019, cited by 37 articles;

  4. “Integrated Modeling for Subsalt Gas Exploration,” AAPG Bulletin, 2020, cited by 33 articles;

  5. “Fracture Prediction in Low-Permeability Reservoirs,” Fuel, 2021, cited by 29 articles;

  6. “Evaluation of Shale Oil Potential in China,” Energy Exploration & Exploitation, 2022, cited by 25 articles;

  7. “Technological Framework for Unconventional Resource Development,” Journal of Energy Resources Technology, 2023, cited by 19 articles.

Conclusion

In conclusion, Dahai Wang exemplifies excellence in petroleum engineering through his sustained contributions to unconventional resource exploration and development. His career blends rigorous academic research with practical innovations that have yielded measurable industry impacts. His ability to lead national-level projects, publish influential research, and drive technological advancements makes him a deserving nominee for the Best Researcher Award. With a vision aligned with sustainable and efficient energy production, he continues to push the boundaries of what is possible in the domain of unconventional oil and gas geology.