Dr. Zhiwei Li | Hydrogen Production and Storage from Petroleum | Best Innovator Award
Lecture at Changzhou University | China
Dr. Zhiwei Li is a highly accomplished researcher in petroleum and natural gas engineering, with expertise spanning oil and gas storage, transportation, functional coatings, and advanced hydrogen energy storage technologies. He earned his Ph.D. in Materials Science and Engineering from Changzhou University and further strengthened his academic foundation through advanced doctoral research training in Chemical and Biomolecular Engineering at the National University of Singapore, reflecting his dedication to global academic collaboration and knowledge exchange. Professionally, he serves as a Lecturer and Master’s Supervisor at Changzhou University, where he is actively involved in mentoring graduate students and leading impactful research projects. His research interests lie in corrosion protection, functional coatings, hydrogen storage materials, and advanced energy transition technologies, positioning him at the forefront of energy innovation. He possesses strong research skills in materials characterization, electrochemical analysis, surface engineering, and the development of sustainable energy solutions, which have enabled him to contribute original and highly cited research. His academic contributions include 49 publications cited by 382 documents, reflecting his influence in the scientific community, with an h-index of 11 demonstrating both productivity and scholarly impact. Dr. Li’s achievements have earned him recognition through several academic honors and awards that highlight his contributions to the advancement of energy materials and sustainable technologies. He is also actively engaged in international collaborations, conferences, and peer-reviewed journals, contributing to the dissemination of cutting-edge research. With a strong background in both theoretical and applied aspects of materials science and energy engineering, he has established himself as a promising scholar committed to addressing critical challenges in corrosion prevention, hydrogen energy storage, and functional materials for the oil and gas sector. In conclusion, Dr. Zhiwei Li blend of advanced education, diverse professional experience, focused research interests, refined skills, and impactful scholarly output reflect his status as a dedicated academic leader and innovator, whose work continues to bridge the gap between traditional energy systems and future-oriented sustainable technologies, marking him as an influential figure in the global scientific community.
Featured Publications
Li, Z., Wu, Q., Zhou, Y., Xu, S., Wang, J., & Peng, H. Study on microstructure and electrochemical corrosion behavior of ζ-FeZn13 phase layer in hot-dip galvanized coating. Journal of Alloys and Compounds.
Li, Z., Zhou, S., Zhou, Y., Peng, H., Wang, J., & Xie, A. Microstructure of batch hot-dip Zn-5 Wt Pct Al coatings: Comparison of ball-milling pretreatment and conventional pretreatment. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science.
Li, Z., Li, D., Zhou, Y., Peng, H., Xie, A., & Wang, J. A review of physical properties of hot-dip galvanized coating layer by layer and their respective electrochemical corrosion behavior. Anti-Corrosion Methods and Materials.
Xu, S., Li, Z., Wen, J., Qiu, P., Xie, A., & Peng, H. Review of TiO2-based heterojunction coatings in photocathodic protection. ACS Applied Nano Materials.
Xie, A., Li, M., Li, Z., & Yue, X. A preparation of debranched waxy maize starch derivatives: Effect of drying temperatures on crystallization and digestibility. International Journal of Biological Macromolecules.
Peng, H., Xia, F., Gu, Y., Wu, C., Su, X., Wang, J., & Li, Z. (2024). Investigating the effect of Cr content on the microstructure and electrochemical measurement of low alloy steel. Materials Today Communications.
Xie, A., Li, M., Li, Z., & Yue, X. (2024). A preparation of debranched waxy maize starch derivatives: Effect of drying temperatures on crystallization and digestibility. International Journal of Biological Macromolecules.