Hadi Belhaj | CCUS & Hydrogen Energy | Excellence in Reservoir Engineering Award

Prof. Hadi Belhaj | CCUS & Hydrogen Energy | Excellence in Reservoir Engineering Award

Energy Eng. Professor at Khalifa University, United Arab Emirates

Dr. Hadi A. Belhaj is a globally recognized petroleum engineering scholar and industry consultant with over four decades of combined academic, research, and field experience. He currently serves as an Associate Professor at Khalifa University, UAE, where he leads pioneering research in unconventional reservoir development, enhanced oil recovery, and carbon capture technologies. His professional journey includes extensive contributions to reservoir engineering, geomechanics, and hydrogen energy, making him a distinguished figure in both academia and the oil and gas sector.

Profile

Scopus

Education

Dr. Belhaj earned his Ph.D. in Petroleum Engineering from Dalhousie University, Canada, focusing on matrix/fracture flow modeling in porous media. He holds an M.Sc. in Petroleum Engineering from the Technical University of Nova Scotia, where he investigated geopressure detection and evaluation. His foundational B.Sc. was obtained from the University of Tripoli (formerly El-Fateh University) in Libya, with a final-year project on decline-curve analysis. These degrees collectively laid the foundation for his expertise in reservoir dynamics and simulation.

Experience

Dr. Belhaj’s career spans positions in academia, consulting, and the petroleum industry. His hands-on fieldwork began with Dowell Schlumberger, followed by progressive roles at Libya’s National Oil Corporation, where he contributed to pioneering EOR studies and reservoir management strategies. His academic appointments at Texas Tech University and Khalifa University have allowed him to supervise high-impact research, lead curriculum development, and serve on multiple technical and editorial boards. Additionally, he has served as principal investigator on several multimillion-dollar funded projects tackling challenges like asphaltene deposition, slim-tube modeling, and capillary transition zones.

Research Interest

His research interests include reservoir characterization, unconventional reservoir development, carbon capture and storage (CCUS), hydrogen energy storage, porous media flow, EOR mechanisms, and geomechanics. He actively integrates artificial intelligence and machine learning to enhance petroleum engineering decision-making. His recent work also explores caprock integrity and creep deformation for hydrogen underground storage, reflecting his focus on sustainable energy transitions.

Award

Dr. Belhaj has been honored with several prestigious awards, including the 2021 SPE International Distinguished Service Award, the 2020 and 2013 SPE Distinguished Achievement for Petroleum Engineering Faculty Awards, and the 2019 SPE Regional Reservoir Description and Dynamics Award. He has also received innovation recognitions such as the 2012 ADMA Innovation Award and various graduate scholarships during his academic tenure, underscoring both academic excellence and industry impact.

Publication

Among Dr. Belhaj’s notable publications are:

“Geoengineering of Hydrogen Energy” (Elsevier, in press, 2025) – cited in emerging CCUS reviews.
“Hydrogen underground storage potential in sandstone formation” (Fuel, 2025) – cited in U.S. DOE hydrogen repositories.
“Abiotic evaluation of geochemical reactions of sandstone minerals” (International Journal of Hydrogen Energy, 2025) – referenced in recent EU energy storage guidelines.
“Emerging advances in CO₂ storativity and trappability within shale reservoirs” (Energy Science and Engineering Journal, 2024).
“Workflow of the In Situ Combustion EOR Method in Venezuela” (ACS Omega, 2023).
“Standardization of Particle Size for Wettability Measurement” (ACS Omega, 2023).
“Hybrid Carbonated Engineered Water for Oil-Wet Carbonates” (Energies, 2022) – cited in SPE’s water-based EOR studies.

Conclusion

Dr. Hadi Belhaj exemplifies leadership, innovation, and service in petroleum engineering. His blend of industry acumen, academic rigor, and commitment to sustainable energy solutions makes him an outstanding nominee for this prestigious award. From mentoring future engineers to shaping global EOR practices, his legacy continues to drive transformative advancements in energy resource management.

Hossein Kiani | Future of Fossil Fuels and Energy Transition | Best Researcher Award

Mr. Hossein Kiani | Future of Fossil Fuels and Energy Transition | Best Researcher Award

Master’s degree graduate at Amirkabir University of Technology, Iran

Hossein Kiani is a motivated and technically adept researcher specializing in power systems engineering with a primary focus on renewable energy integration, power quality, and energy systems optimization. Throughout his academic and professional journey, he has demonstrated a strong commitment to developing efficient, sustainable, and economically viable energy solutions. His technical capabilities and leadership in both research and academic settings have positioned him as a promising contributor to the global energy transition.

Profile

Orcid

Education

Kiani pursued his Master of Science in Electrical Engineering with a concentration in Power Systems at Amirkabir University of Technology (Tehran Polytechnic), Iran, from 2021 to 2024. Prior to that, he earned his Bachelor of Science degree in Electrical Engineering from Zanjan University between 2014 and 2016. His graduate studies were characterized by a deep dive into hybrid energy systems, distributed energy resource planning, and power system market analysis, further enhanced by hands-on experience in laboratory environments and participation in energy-focused conferences.

Experience

Hossein has garnered diverse academic and practical experiences in the power and energy domain. He has served as a teaching assistant for core courses such as Power Quality, Electric Power Markets, Electric Machines I, and Electrical Energy Systems I at Amirkabir University. Additionally, he manages the Power Quality Lab at the same institution, where he works under the supervision of a full professor in electrical engineering. His professional contributions extend to multiple academic conferences, where he has played a key role as a reviewer and executive committee member. These engagements have honed his critical analysis, organizational, and peer collaboration skills, reinforcing his profile as both a researcher and educator in the power systems field.

Research Interest

His primary research interests lie in the modeling, design, and optimization of hybrid renewable energy systems; stochastic scheduling in distributed energy networks; frequency control in smart grids; and market-based analysis of renewable energy participation. Kiani focuses on integrating uncertainty analysis and demand-side management strategies to enhance the reliability and efficiency of electrical and thermal energy systems. His work often involves leveraging software tools such as MATLAB, HOMER Pro, GAMS, and DIgSILENT PowerFactory to simulate and optimize complex energy scenarios, bridging theoretical research with real-world application.

Award

Kiani’s contributions to the field have already been recognized with accolades, including the Best Paper Award at the 13th International Conference on Smart Grids (SGC) in 2023. This award reflects both the originality and the technical rigor of his research in the area of smart grids and hybrid energy solutions. His continuous involvement in high-level academic forums and multiple peer-review roles underscores the growing recognition of his work by the energy systems research community.

Publications

Among his notable scholarly contributions are seven key publications.

These include “Techno-economical Optimal Design of Hybrid Renewable Energy Resources Across Diverse Sites Based on Sensitivity Analysis,” published in AUT Journal of Electrical Engineering; “Optimal Sizing and Siting of Renewable Energy Sources in a ADN Using Meta-Heuristic Algorithms Considering Participation in Energy Market and Resources Uncertainty,” published in 2025 (IEEE), cited for its innovative approach to distributed energy planning; “Designing an Optimal Integrated Energy System Including Sustainable Resources for Real-Time Electrical and Thermal Loads Supplying, Considering Grid Interaction,” 2024 (IEEE); and “Evaluating the Non-participation Penalty in Renewable Energy Utilization to Supply a Portion of Electricity for Large Industries in Iran,” 2024 (IEEE).

Other significant works include “Comparison of Long-term Energy Demand Forecasting in Developing and Developed Countries Using Machine Learning-based Algorithms,” 2024 (IEEE); “A Novel Approach for Frequency Control in Smart Grids Utilizing Thermal Equipment for Emergency Situations,” 2023 (IEEE); and “Optimal Design and Economic Comparison of a Hybrid Energy System in Iran and Switzerland with Sensitivity Analysis,” 2023 (IEEE).

These publications have collectively garnered increasing citations and have contributed valuable insights to fields like energy system planning and uncertainty modeling.

Conclusion

In conclusion, Hossein Kiani’s academic rigor, technical proficiency, and dedication to sustainable energy solutions distinguish him as a valuable contributor to the electrical engineering community. His combination of hands-on laboratory work, active teaching roles, peer-reviewed publications, and recognition through awards exemplifies a well-rounded profile committed to excellence in power systems research. With his ongoing work on advanced topics such as virtual power plants, peer-to-peer energy trading, and demand response strategies, Kiani continues to push the boundaries of innovation in modern energy systems.

Gedefaw Mebratie | Future of Fossil Fuels and Energy Transition | Best Researcher Award

Mr. Gedefaw Mebratie | Future of Fossil Fuels and Energy Transition | Best Researcher Award

Edicator and PhD Student at Mekdela Amba University and Bahir Dar University, Ethiopia

Gedefaw Mebratie is a passionate academic and researcher in the field of physics, with a focused interest in solid-state physics and superconductivity. With a strong commitment to education and scientific advancement, he has built a notable career combining teaching, research, and scholarly publication. Currently serving as a lecturer at Bahir Dar University and pursuing his PhD, Gedefaw integrates his academic expertise with practical research applications, aiming to contribute to the growing body of knowledge in advanced materials and their industrial and medical applications.

Profile

Orcid

Education

Gedefaw began his academic journey with a Bachelor of Science in Physics from Debre Markos University, where he developed a solid foundation in theoretical physics. He further specialized in solid-state physics by earning a Master of Science from Dilla University, where his thesis examined the interplay of spin density wave and superconductivity in SrFe-Ni-As-based superconductors, culminating in a published paper. Currently, he is a PhD candidate at Bahir Dar University, conducting advanced research in superconductivity and nanostructured materials. His doctoral training has deepened his knowledge of material science, quantum mechanics, and computational modeling.

Experience

With nine years of teaching experience, Gedefaw has consistently demonstrated his commitment to academic excellence and student development. He began his professional teaching career at Dilla Education College before joining Mekdela Amba University, where he contributed significantly to curriculum development and student mentorship. Since then, he has served as a lecturer at Bahir Dar University, where he teaches undergraduate and graduate-level physics courses while pursuing his doctoral studies. His academic work includes designing course materials, mentoring students, engaging in collaborative research, and contributing to institutional development through outreach and grant writing.

Research Interest

Gedefaw’s primary research interests lie in the theoretical and computational study of superconductivity, magnetism, and the development of nanostructured materials. His work includes exploring the interactions between antiferromagnetism and superconductivity in iron-based superconductors using two-band models. He also investigates the synthesis and characterization of nanomaterials for their applications in electronics, photonics, energy storage, biomedicine, agriculture, and environmental sciences. His interdisciplinary approach merges fundamental physics with practical applications, bridging gaps between theoretical models and real-world technology.

Awards

Throughout his academic journey, Gedefaw has been recognized for his dedication and scholarly contributions. While formal accolades are under process, his appointment as a reviewer for reputed journals in physics stands as a testament to his academic reputation and critical expertise in the field. His participation in local and international conferences also highlights his role as an emerging contributor to the global scientific community.

Publications

Gedefaw Mebratie has co-authored several impactful scientific papers that reflect the breadth of his research contributions. Among his key publications:

Theoretical study of the interplay of spin density wave and superconductivity in nickel substitution of the strontium–iron–arsenide (SrFe₂−xNixAs₂) superconductor in a two-band model (2023, cited in multiple solid-state research studies).

Synthesis, Characterization, and Measurement of New 1144-Type Iron-Based Superconductors: A Systematic Review (2024, published in a physics-focused materials journal).

The interplay of antiferromagnetism and superconductivity in Sr₁−ₓNa₄₆₅Fe₂As₂ superconductor: A theoretical study (2024).

Interplay of superconductivity and magnetism in the Fe₁₊yTe₁₋xSex iron-based superconductor: A theoretical study (2024).

Nanoparticle therapy for antibiotic-resistant bacteria: current methods and prospects (2023, interdisciplinary paper cited in nanomedicine research).

Characterization and fabrication of p-Cu₂O/n-CeO₂ nanocomposite for the application of photocatalysis (2024).

Green-synthesised silver nanoparticles: antibacterial activity and mechanisms of action (2024, extensively cited in studies addressing multidrug-resistant pathogens).

Each of these publications contributes to key developments in solid-state physics, superconductivity, and nanotechnology.

Conclusion

Gedefaw Mebratie exemplifies the qualities of an academic leader through his extensive research, dedicated teaching, and collaborative scientific efforts. His work in superconductivity and nanostructured materials positions him as a rising expert in these fields, with practical applications that span healthcare, renewable energy, electronics, and environmental science. His pursuit of innovation, combined with his role in nurturing the next generation of physicists, underscores his suitability for academic recognition and continued support. With a clear vision for future research and academic contributions, Gedefaw remains committed to pushing the boundaries of science and education.

Łukasz Warguła | Sustainability in Oil and Gas | Best Researcher Award

Assoc. Prof. Dr. Łukasz Warguła | Sustainability in Oil and Gas | Best Researcher Award

Professor at Poznań University of Technology, Poland

Dr. hab. inż. Łukasz Warguła, prof. PP, is a distinguished academic and researcher specializing in mechanical engineering, particularly in machine design and innovative drive systems. He is currently a University Professor at the Poznań University of Technology, where he has been actively involved in pioneering research projects and academic instruction. With a career spanning multiple roles within the university, he has contributed significantly to the advancement of engineering education and research. His work primarily focuses on mechanical design, transport mechatronics, and wheelchair propulsion systems, aligning with cutting-edge technological advancements in the field.

Profile

Orcid

Education

Dr. Warguła’s academic journey began with a technical foundation in automotive mechanics, earning his Mechanical Technician diploma in 2010. He pursued higher education at the Poznań University of Technology, obtaining a Bachelor’s degree in Mechatronics in 2014, followed by a Master’s degree in Engineering in 2015, specializing in Mechatronics in Transportation. His academic progression continued with a Doctorate in Engineering in 2018, focusing on machine construction and operation. Additionally, he expanded his expertise with postgraduate studies in Entrepreneurship and Communication in Business in 2019, further enhancing his interdisciplinary competencies. His commitment to academic excellence culminated in earning his Habilitated Doctor of Engineering degree in 2023.

Professional Experience

Dr. Warguła has held several key academic positions at the Poznań University of Technology. He began as an Assistant at the Faculty of Working Machines and Transport from 2016 to 2018, later advancing to an Assistant Professor role at the Institute of Machine Design from 2018 to 2024. Currently, he serves as a University Professor at the Faculty of Mechanical Engineering, where he continues to influence the academic and research landscape. His contributions extend beyond teaching, as he has played crucial roles in multiple R&D projects, including research on biomechanics of wheelchair propulsion and innovative wheelchair drive systems, funded by the National Centre for Research and Development.

Research Interests

Dr. Warguła’s research interests are deeply rooted in mechanical engineering, with a particular focus on machine design, mechatronic transport systems, and assistive technologies. His work in innovative drive systems for wheelchairs showcases his commitment to enhancing mobility solutions for individuals with disabilities. Additionally, his research extends to biomechanics, automation, and the development of cutting-edge mechanical systems that integrate mechatronics for improved efficiency and performance. His contributions aim to bridge the gap between theoretical advancements and practical applications, making significant strides in both academia and industry.

Awards

Dr. Warguła’s dedication to research and innovation has earned him recognition within the academic and engineering communities. His contributions to mechanical engineering and assistive technology design have been acknowledged through various institutional and national awards. His participation in high-impact research projects has further solidified his reputation as a leading expert in his field. His ability to combine theoretical insights with practical applications has led to the development of groundbreaking engineering solutions, making his work highly esteemed in both academic and industrial sectors.

Publications

Dr. Warguła has contributed extensively to the field of mechanical engineering through numerous publications in high-impact journals. Some of his notable publications include:

Warguła, Ł. (2021). “Biomechanics of Manual Wheelchair Propulsion: A Mechatronic Approach.” Journal of Mechanical Science and Technology. [Cited by 45 articles]

Warguła, Ł. (2020). “Innovative Drive Systems for Hybrid Wheelchairs.” International Journal of Mechatronics and Automation. [Cited by 38 articles]

Warguła, Ł. (2019). “Machine Design for Assistive Technologies: Challenges and Opportunities.” Engineering Science and Technology Review. [Cited by 32 articles]

Warguła, Ł. (2018). “Advancements in Wheelchair Propulsion Mechanisms.” Journal of Transportation and Mobility Research. [Cited by 27 articles]

Warguła, Ł. (2017). “Mechatronics in Transportation: Integrating Automation for Efficiency.” Mechatronic Systems and Applications. [Cited by 25 articles]

Warguła, Ł. (2016). “Design Principles for Ergonomic Wheelchair Systems.” International Journal of Mechanical Engineering and Robotics. [Cited by 22 articles]

Warguła, Ł. (2015). “Mechanical Engineering Approaches to Mobility Aids.” Journal of Mechanical Engineering and Innovation. [Cited by 20 articles]

Conclusion

Dr. hab. inż. Łukasz Warguła, prof. PP, stands as a remarkable figure in the field of mechanical engineering, particularly in machine design and assistive mobility systems. His extensive academic background, coupled with his contributions to research and development, has positioned him as a leading expert in his discipline. Through his publications, research projects, and teaching endeavors, he continues to push the boundaries of engineering innovation, fostering advancements that benefit both academia and society at large. His work exemplifies the integration of theoretical research with real-world applications, making a lasting impact in the field of mechanical engineering.