Hadi Belhaj | CCUS & Hydrogen Energy | Excellence in Reservoir Engineering Award

Prof. Hadi Belhaj | CCUS & Hydrogen Energy | Excellence in Reservoir Engineering Award

Energy Eng. Professor at Khalifa University, United Arab Emirates

Dr. Hadi A. Belhaj is a globally recognized petroleum engineering scholar and industry consultant with over four decades of combined academic, research, and field experience. He currently serves as an Associate Professor at Khalifa University, UAE, where he leads pioneering research in unconventional reservoir development, enhanced oil recovery, and carbon capture technologies. His professional journey includes extensive contributions to reservoir engineering, geomechanics, and hydrogen energy, making him a distinguished figure in both academia and the oil and gas sector.

Profile

Scopus

Education

Dr. Belhaj earned his Ph.D. in Petroleum Engineering from Dalhousie University, Canada, focusing on matrix/fracture flow modeling in porous media. He holds an M.Sc. in Petroleum Engineering from the Technical University of Nova Scotia, where he investigated geopressure detection and evaluation. His foundational B.Sc. was obtained from the University of Tripoli (formerly El-Fateh University) in Libya, with a final-year project on decline-curve analysis. These degrees collectively laid the foundation for his expertise in reservoir dynamics and simulation.

Experience

Dr. Belhaj’s career spans positions in academia, consulting, and the petroleum industry. His hands-on fieldwork began with Dowell Schlumberger, followed by progressive roles at Libya’s National Oil Corporation, where he contributed to pioneering EOR studies and reservoir management strategies. His academic appointments at Texas Tech University and Khalifa University have allowed him to supervise high-impact research, lead curriculum development, and serve on multiple technical and editorial boards. Additionally, he has served as principal investigator on several multimillion-dollar funded projects tackling challenges like asphaltene deposition, slim-tube modeling, and capillary transition zones.

Research Interest

His research interests include reservoir characterization, unconventional reservoir development, carbon capture and storage (CCUS), hydrogen energy storage, porous media flow, EOR mechanisms, and geomechanics. He actively integrates artificial intelligence and machine learning to enhance petroleum engineering decision-making. His recent work also explores caprock integrity and creep deformation for hydrogen underground storage, reflecting his focus on sustainable energy transitions.

Award

Dr. Belhaj has been honored with several prestigious awards, including the 2021 SPE International Distinguished Service Award, the 2020 and 2013 SPE Distinguished Achievement for Petroleum Engineering Faculty Awards, and the 2019 SPE Regional Reservoir Description and Dynamics Award. He has also received innovation recognitions such as the 2012 ADMA Innovation Award and various graduate scholarships during his academic tenure, underscoring both academic excellence and industry impact.

Publication

Among Dr. Belhaj’s notable publications are:

“Geoengineering of Hydrogen Energy” (Elsevier, in press, 2025) – cited in emerging CCUS reviews.
“Hydrogen underground storage potential in sandstone formation” (Fuel, 2025) – cited in U.S. DOE hydrogen repositories.
“Abiotic evaluation of geochemical reactions of sandstone minerals” (International Journal of Hydrogen Energy, 2025) – referenced in recent EU energy storage guidelines.
“Emerging advances in CO₂ storativity and trappability within shale reservoirs” (Energy Science and Engineering Journal, 2024).
“Workflow of the In Situ Combustion EOR Method in Venezuela” (ACS Omega, 2023).
“Standardization of Particle Size for Wettability Measurement” (ACS Omega, 2023).
“Hybrid Carbonated Engineered Water for Oil-Wet Carbonates” (Energies, 2022) – cited in SPE’s water-based EOR studies.

Conclusion

Dr. Hadi Belhaj exemplifies leadership, innovation, and service in petroleum engineering. His blend of industry acumen, academic rigor, and commitment to sustainable energy solutions makes him an outstanding nominee for this prestigious award. From mentoring future engineers to shaping global EOR practices, his legacy continues to drive transformative advancements in energy resource management.

Satyen Kumar Das | Petroleum Refining, sustainability & Circularity | Best Researcher Award

Dr. Satyen Kumar Das | Petroleum Refining, sustainability & Circularity | Best Researcher Award

Chief General Manager at Indian Oil Corporation Limited, R&D Centre, India

Dr. Satyen Kumar Das is an accomplished chemical engineer and a senior research leader with nearly three decades of expertise in petroleum refining technology, sustainability, and circular economy initiatives. Currently serving as the Chief General Manager at the IndianOil R&D Centre, he leads the Refinery Technology area and has been instrumental in driving innovation, commercialization, and strategic deployment of advanced refining technologies. His groundbreaking work in residue upgradation, crude-to-chemicals conversion, and plastic circularity solutions has significantly contributed to energy transition goals and environmental sustainability in India’s refining sector.

Profile

Scopus

Education

Dr. Das obtained his Ph.D. in Chemical Engineering from the Indian Institute of Technology Delhi, after completing his M.Tech in Chemical Engineering from the Indian Institute of Technology Kanpur. His foundational studies began with a B.Tech in Chemical Engineering from Calcutta University. These prestigious academic credentials laid the groundwork for his exceptional research capabilities and technical leadership in the domain of refining technologies.

Experience

Since joining the IndianOil R&D Centre in 1995, Dr. Das has steadily advanced through technical and leadership roles, amassing nearly 30 years of experience in industrial R&D, troubleshooting, pilot-scale validation, and full-scale commercialization. Between 1995 and 2013, he played a pivotal role in developing and implementing a range of catalytic and refining processes, such as INDMAX, INDALIN, DIST-Extra, and Fischer Tropsch synthesis. From 2014 to 2025, he has spearheaded the Refining Technology division, driving the development of strategic technologies including Ind-Coker for residue upgradation, Needle Coke Technology, INDEcoP2F for plastic circularity, and novel methods for waste-to-energy and CO₂ valorization. His hands-on involvement spans across the development pipeline—conceptualization, R&D, scale-up, plant design, and commercialization of technologies now operating in several IndianOil refineries.

Research Interests

His research interests are multidisciplinary, encompassing catalytic cracking, heavy oil upgradation, production of light olefins and aromatics from crude oil, needle coke synthesis, isomerization, and bio-oil and plastic waste processing. More recently, his focus has expanded to circular economy solutions like INDEcoP2F, aiming to convert waste plastics into fuels, and Crude-to-Chemical technologies that align with future net-zero and energy-efficient refinery configurations. Dr. Das’s intellectual rigor is demonstrated through over 210 patents (144 granted globally), more than 90 journal and conference publications, and numerous collaborative industry-academic R&D projects.

Awards

Dr. Das’s distinguished career is recognized through a series of national-level accolades. He received the National Petroleum Management Program (NPMP) award twice (2002–03 and 2003–04) for INDMAX and Needle Coke technologies, respectively.

In 2004, the Department of Scientific and Industrial Research (DSIR) awarded him for INDMAX commercialization. He was honored with the AIMA Breakthrough Innovation in R&D award in 2017 and again in 2025 under Business Model Innovation for IV-IZOMaxCATR technology.

Among his most recent accolades are the 2019–20 Innovation Award for Delayed Coker Technology, the 2022–23 Innovation Award for INDEcoP2F plastic-to-fuel technology, and the 2023–24 Innovation Award for IV-IZOMaxCATR.

In 2025, he was also conferred the “Jewel of India” award by the KTK Outstanding Achievers and Education Foundation for his remarkable contributions to the petroleum sector.

Publications

Among his notable publications are:

“CO-Hydrogenation over silica supported iron based catalysts: Influence of potassium loading” in Applied Energy (2013); “Silica supported Fe-Cu-K catalysts for Syngas conversion to fuel” in Fuel Processing Technology (2014);

“Molecular Level Structural Insight into Clarified Oil by NMR Spectroscopy” in Energy & Fuels (2017);

“Study of thermal cracking kinetics and co-processing of bio-crude” in Journal of Thermal Analysis and Calorimetry (2023); “Experimental study on feasibility of using delayed coking for high acidic crude oil” in Journal of Analytical and Applied Pyrolysis (2025);

“Octamax®: IndianOil technology for olefinic C4 valorization” in Oil Gas & Power Magazine (2025); and “Co-conversion of Biomass and Petroleum Vacuum Residue” submitted to Fuels (2025).

These contributions have been cited in numerous academic and industrial studies, reflecting his impact across research communities.

Conclusion

In conclusion, Dr. Satyen Kumar Das exemplifies technical excellence, innovation, and leadership in refining science. His work not only aligns with the strategic goals of energy security and sustainable development but also advances the Indian oil refining industry’s global competitiveness. His unparalleled achievements in research, technology development, and commercialization make him an outstanding candidate for any award recognizing excellence in engineering innovation and impact.