Hadi Belhaj | CCUS & Hydrogen Energy | Excellence in Reservoir Engineering Award

Prof. Hadi Belhaj | CCUS & Hydrogen Energy | Excellence in Reservoir Engineering Award

Energy Eng. Professor at Khalifa University, United Arab Emirates

Dr. Hadi A. Belhaj is a globally recognized petroleum engineering scholar and industry consultant with over four decades of combined academic, research, and field experience. He currently serves as an Associate Professor at Khalifa University, UAE, where he leads pioneering research in unconventional reservoir development, enhanced oil recovery, and carbon capture technologies. His professional journey includes extensive contributions to reservoir engineering, geomechanics, and hydrogen energy, making him a distinguished figure in both academia and the oil and gas sector.

Profile

Scopus

Education

Dr. Belhaj earned his Ph.D. in Petroleum Engineering from Dalhousie University, Canada, focusing on matrix/fracture flow modeling in porous media. He holds an M.Sc. in Petroleum Engineering from the Technical University of Nova Scotia, where he investigated geopressure detection and evaluation. His foundational B.Sc. was obtained from the University of Tripoli (formerly El-Fateh University) in Libya, with a final-year project on decline-curve analysis. These degrees collectively laid the foundation for his expertise in reservoir dynamics and simulation.

Experience

Dr. Belhaj’s career spans positions in academia, consulting, and the petroleum industry. His hands-on fieldwork began with Dowell Schlumberger, followed by progressive roles at Libya’s National Oil Corporation, where he contributed to pioneering EOR studies and reservoir management strategies. His academic appointments at Texas Tech University and Khalifa University have allowed him to supervise high-impact research, lead curriculum development, and serve on multiple technical and editorial boards. Additionally, he has served as principal investigator on several multimillion-dollar funded projects tackling challenges like asphaltene deposition, slim-tube modeling, and capillary transition zones.

Research Interest

His research interests include reservoir characterization, unconventional reservoir development, carbon capture and storage (CCUS), hydrogen energy storage, porous media flow, EOR mechanisms, and geomechanics. He actively integrates artificial intelligence and machine learning to enhance petroleum engineering decision-making. His recent work also explores caprock integrity and creep deformation for hydrogen underground storage, reflecting his focus on sustainable energy transitions.

Award

Dr. Belhaj has been honored with several prestigious awards, including the 2021 SPE International Distinguished Service Award, the 2020 and 2013 SPE Distinguished Achievement for Petroleum Engineering Faculty Awards, and the 2019 SPE Regional Reservoir Description and Dynamics Award. He has also received innovation recognitions such as the 2012 ADMA Innovation Award and various graduate scholarships during his academic tenure, underscoring both academic excellence and industry impact.

Publication

Among Dr. Belhaj’s notable publications are:

“Geoengineering of Hydrogen Energy” (Elsevier, in press, 2025) – cited in emerging CCUS reviews.
“Hydrogen underground storage potential in sandstone formation” (Fuel, 2025) – cited in U.S. DOE hydrogen repositories.
“Abiotic evaluation of geochemical reactions of sandstone minerals” (International Journal of Hydrogen Energy, 2025) – referenced in recent EU energy storage guidelines.
“Emerging advances in CO₂ storativity and trappability within shale reservoirs” (Energy Science and Engineering Journal, 2024).
“Workflow of the In Situ Combustion EOR Method in Venezuela” (ACS Omega, 2023).
“Standardization of Particle Size for Wettability Measurement” (ACS Omega, 2023).
“Hybrid Carbonated Engineered Water for Oil-Wet Carbonates” (Energies, 2022) – cited in SPE’s water-based EOR studies.

Conclusion

Dr. Hadi Belhaj exemplifies leadership, innovation, and service in petroleum engineering. His blend of industry acumen, academic rigor, and commitment to sustainable energy solutions makes him an outstanding nominee for this prestigious award. From mentoring future engineers to shaping global EOR practices, his legacy continues to drive transformative advancements in energy resource management.

Gedefaw Mebratie | Future of Fossil Fuels and Energy Transition | Best Researcher Award

Mr. Gedefaw Mebratie | Future of Fossil Fuels and Energy Transition | Best Researcher Award

Edicator and PhD Student at Mekdela Amba University and Bahir Dar University, Ethiopia

Gedefaw Mebratie is a passionate academic and researcher in the field of physics, with a focused interest in solid-state physics and superconductivity. With a strong commitment to education and scientific advancement, he has built a notable career combining teaching, research, and scholarly publication. Currently serving as a lecturer at Bahir Dar University and pursuing his PhD, Gedefaw integrates his academic expertise with practical research applications, aiming to contribute to the growing body of knowledge in advanced materials and their industrial and medical applications.

Profile

Orcid

Education

Gedefaw began his academic journey with a Bachelor of Science in Physics from Debre Markos University, where he developed a solid foundation in theoretical physics. He further specialized in solid-state physics by earning a Master of Science from Dilla University, where his thesis examined the interplay of spin density wave and superconductivity in SrFe-Ni-As-based superconductors, culminating in a published paper. Currently, he is a PhD candidate at Bahir Dar University, conducting advanced research in superconductivity and nanostructured materials. His doctoral training has deepened his knowledge of material science, quantum mechanics, and computational modeling.

Experience

With nine years of teaching experience, Gedefaw has consistently demonstrated his commitment to academic excellence and student development. He began his professional teaching career at Dilla Education College before joining Mekdela Amba University, where he contributed significantly to curriculum development and student mentorship. Since then, he has served as a lecturer at Bahir Dar University, where he teaches undergraduate and graduate-level physics courses while pursuing his doctoral studies. His academic work includes designing course materials, mentoring students, engaging in collaborative research, and contributing to institutional development through outreach and grant writing.

Research Interest

Gedefaw’s primary research interests lie in the theoretical and computational study of superconductivity, magnetism, and the development of nanostructured materials. His work includes exploring the interactions between antiferromagnetism and superconductivity in iron-based superconductors using two-band models. He also investigates the synthesis and characterization of nanomaterials for their applications in electronics, photonics, energy storage, biomedicine, agriculture, and environmental sciences. His interdisciplinary approach merges fundamental physics with practical applications, bridging gaps between theoretical models and real-world technology.

Awards

Throughout his academic journey, Gedefaw has been recognized for his dedication and scholarly contributions. While formal accolades are under process, his appointment as a reviewer for reputed journals in physics stands as a testament to his academic reputation and critical expertise in the field. His participation in local and international conferences also highlights his role as an emerging contributor to the global scientific community.

Publications

Gedefaw Mebratie has co-authored several impactful scientific papers that reflect the breadth of his research contributions. Among his key publications:

Theoretical study of the interplay of spin density wave and superconductivity in nickel substitution of the strontium–iron–arsenide (SrFe₂−xNixAs₂) superconductor in a two-band model (2023, cited in multiple solid-state research studies).

Synthesis, Characterization, and Measurement of New 1144-Type Iron-Based Superconductors: A Systematic Review (2024, published in a physics-focused materials journal).

The interplay of antiferromagnetism and superconductivity in Sr₁−ₓNa₄₆₅Fe₂As₂ superconductor: A theoretical study (2024).

Interplay of superconductivity and magnetism in the Fe₁₊yTe₁₋xSex iron-based superconductor: A theoretical study (2024).

Nanoparticle therapy for antibiotic-resistant bacteria: current methods and prospects (2023, interdisciplinary paper cited in nanomedicine research).

Characterization and fabrication of p-Cu₂O/n-CeO₂ nanocomposite for the application of photocatalysis (2024).

Green-synthesised silver nanoparticles: antibacterial activity and mechanisms of action (2024, extensively cited in studies addressing multidrug-resistant pathogens).

Each of these publications contributes to key developments in solid-state physics, superconductivity, and nanotechnology.

Conclusion

Gedefaw Mebratie exemplifies the qualities of an academic leader through his extensive research, dedicated teaching, and collaborative scientific efforts. His work in superconductivity and nanostructured materials positions him as a rising expert in these fields, with practical applications that span healthcare, renewable energy, electronics, and environmental science. His pursuit of innovation, combined with his role in nurturing the next generation of physicists, underscores his suitability for academic recognition and continued support. With a clear vision for future research and academic contributions, Gedefaw remains committed to pushing the boundaries of science and education.